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Chapter 3
OPEN CHANNEL HYDRAULICS

SYNOPSIS

The conveyance capacity of most drainage facilities can be
evaluated using the principles of open channel hydraulics.
This chapter provides introductory material on open channel
terminology; mass, energy, and momentum principles; and
critical, uniform, and nonuniform flow conditions. The
fundamental relationship for performing open channel capac-
ity calculations is Manning's Equation. Key references for
information presented in this chapter are Chow (1959),
Henderson (1966), and French (1985). Supplemental refer-
ences include Streeter (1971), Simon (1981), Rouse (1950),
and USDOT, FHWA (1961) and (1965).

3.1 TERMINOLOGY

An open channel is defined as any conduit conveying a fluid
in which the liquid surface is exposed to the atmosphere as

a boundary. Pipe flow occurs in a conduit that is closed to
atmospheric pressure and subject to hydraulic pressure alone.
Open channel conditions are the basis for most stormwater
management calculations, except for some storm sewer or
culvert systems. Pipe flow fundamentals are discussed in
Chapters 5 (Culverts) and 6 (Storm Sewers).

Open channel flow problems can be more complicated than
similar problems in pressure pipes. This is primarily
because physical conditions (such as cross section, slope,
and roughness) are typically more variable in channels.
Calculations for open channel flow problems tend to be more
empirical than those for pipes, and there is greater
uncertainty when assigning friction factors.

Terminology important to an understanding of open channel
flow problems is briefly defined and discussed below.

3.1.1 GEOMETRIC ELEMENTS

Open channel flow problems generally require an evaluation
of various geometric elements associated with the shape of

3-1



VOLUME 3--THEORY 1988

the channel. For most artificial or constructed open chan- fﬁ)
nels, geometric elements can be determined mathematically in B
terms of depth of flow and other dimensions for the channel
shape. For most natural channel sections, however, profile
sections based on the actual variations in the depth of flow
across the section are generally required. The following
geometric terminology is pertinent to the fundamentals of
open channel hydraulics:

Prismatic channel. An artificial channel with non-varying
cross section and constant bottom slope.

Channel section. The cross section of a channel taken
perpendicular to the direction of flow.

Depth of flow. The vertical distance from the lowest point
of a channel section to the free surface, designated as vy.
The depth of flow measured perpendicular to the channel
bottom is known as the depth of flow for the section and is
designated as d. When the channel slope is small (less than
1 percent), the depths y and d are essentially equal. The

relationship between y and d is expressed as: j“)
__d
coso (3-1)
where:
y = Vertical depth of flow, in feet
d = Perpendicular depth of flow, in feet
© = Slope angle of the channel bottom, in degrees

Stage. The elevation or vertical distance of the water
surface relative to a datum. If the lowest point of a

channel is taken as the datum, then the stage and depth of
flow are equal.

Control section. Any section at which the depth of flow is
known or can be controlled at a given stage for specified
discharge rates.

N

Top width. The width of the channel section at the free
surface.
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Water area. The cross-sectional area of the flow perpendi-
cular to the direction of flow.

Wetted perimeter. The length of the line of intersection of
the channel wetted surface with a cross-sectional plane
perpendicular to the direction of flow.

Hydraulic radius. The ratio of the water area to its wetted
perimeter, which is expressed mathematically as:

R = _1;_ (3-2)
where:
R = Hydraulic radius of the channel, in feet
A = Water area of the channel; in square feet
P = Wetted perimeter of the channel, in feet

Hydraulic depth. The ratio of the water area to top width,
which is expressed mathematically as:

- A -
d = T (3-3)
where:
d = Hydraulic depth or mean depth of flow, in
m feet
A = Water area of the channel, in square feet
T = Top width of the channel, in feet

Equivalent depth. The depth corresponding to an area of

flow having a width twice the depth, expressed mathema-
tically as:

a_ = (a/2) /2 (3-4)

where:

de = Equivalent depth, in feet
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A = Cross-sectional flow area, in square feet ' {T}

The equivalent depth is often used to calculate the Froude
number for flow in pipes under open channel flow conditions.

Critical flow section factor. The product of the water area
and the square root of the hydraulic depth, expressed
mathematically as:

!
Z =2 (/H;)1/2 = A % 1 & ' (3-5) |
where:
Z = Critical flow section factor
A = Water area, in square feet
dm = Hydraulic depth (see Equation 3-3), in feet
T = Top width of channel, in feet
Uniform flow section factor. Based on Manning's Equation, 5&)

the product of the water area and the hydraulic radius
raised to the 2/3 power, expressed mathematically as:

2/3

U_. = AR (3-6)
¥
where:
UF = Uniform flow section factor for Manning's
Equation f
A = Water area, in square feet
R = Hydraulic radius, in feet

3.1.2 STEADY/UNSTEADY FLOW

Time variations of open channel flow can be classified as
either steady or unsteady. Steady flow occurs in an open
channel when the discharge or rate of flow at any location
along the channel remains constant with respect to time.

The maintenance of steady flow in any channel reach requires
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that the rates of inflow and outflow be constant and equal.
Conversely, open channel flow is unsteady when the discharge
at any location in the channel changes with respect to time.
During periods of stormwater runoff, the inflow hydrograph
to an open channel is usually unsteady. However, in prac-
tice, open channel flow is generally assumed to be steady at
the discharge rate for which the channel is being designed
(1.e., peak discharge of the inflow hydrograph).

3.1.3 UNIFORM/NONUNIFORM FLOW

Spatial variations of open channel flow can be classified as
either uniform or nonuniform.

Uniform flow occurs only in a channel of constant cross sec-
tion, slope, and roughness, known as a uniform open channel.
If a given channel segment is uniform, the mean velocity and
depth of flow will be constant with respect to distance.
When the requirements for uniform flow are met, the depth of
flow for a given discharge is defined as the normal depth of
flow. In practice, minor variations in the channel bottom
or deviations from the average cross section can be ignored
as long as the average values are representative of actual
channel conditions.

A general assumption is that uniform flow is also steady
flow. It is reasonable to conclude that when the water
surface remains constant with time, depth will remain
constant with distance.

True uniform flow rarely exists in either natural or arti-
ficial channels. Any change in the channel cross section,
slope, or roughness with distance causes the depths and
average velocities to change with distance. Flow that
varies in depth and velocity when the discharge is constant,
or steady, is defined as steady nonuniform flow.

Unsteady nonuniform flow, in which there are variations of
both space and time, is the most complex type to evaluate
mathematically. Chow (1959), Henderson (1966) , or French
(1985) should be consulted for theoretical information.

Nonuniform flow may be further classified as either rapidly
or gradually varied. Rapidly varied flow is also known as a
local phenomenon, examples of which include the hydraulic

3-5
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jump and hydraulic drop. The primary example of gradually
varied flow occurs when subcritical flow is restricted by a
culvert or storage reservoir. The water surface profile
caused by such a restriction is generally referred to as a
backwater curve. Additional theoretical information on
nonuniform flow evaluations is presented in Section 3.5.

3.1.4 LAMINAR/TURBULENT FLOW

The effect of fluid viscosity relative to the inertial
forces of motion is an important property to consider when
evaluating open channel flow.

Laminar flow generally occurs when the viscous forces are
strong relative to inertial forces. Water particles will
appear to move in definite smooth paths, or streamlines,

when flow is laminar. Laminar flow is known to occur in

shallow overland or sheet flow conditions.

When the viscous forces are weak relative to the inertial
forces, the flow can be classified as turbulent. 1In
turbulent flow, the water particles move in irreqular paths
that are neither smooth nor fixed, and the result is a
random mixing motion. Because turbulent flow is the most
common type occurring in open channel facilities, it is the
type considered for most hydraulic procedures, excluding
shallow overland flow.

Operational limits for laminar and turbulent flow can be
evaluated using a dimensionless parameter known as the
Reynolds number, which is expressed mathematically as:

Re = —— (3-7)

where:
Re = Reynolds number, dimensionless
v = Averagdge velocity of flow, in feet/second

L = Characteristic length, in feet (Hydraulic
radius as presented in Equation 3-2)

v = Kinematic viscosity of fluid, in square feet/
second
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Since viscosity is in the denominator, low Reynolds number .
values are associated with laminar flow (high viscosity
relative to inertial forces) and high Reynolds number values
are associated with turbulent flow (high inertial forces
relative to viscosity).

Numerous experiments have been performed to establish opera-
tional limits of the Reynolds number that will define when
laminar and turbulent flow occur. When flow can be clas-
sified as neither laminar nor turbulent, it is called
transitional. When the hydraulic radius is used to deter-
mine the characteristic length in Equation 3-7, then the
following operational limits of the Reynolds number are
reported (French, 1985):

Laminar Flow Re < 500
Transitional Flow 500 < Re <712,500
Turbulent Flow Re > 12,500

3.1.5 SUBCRITICAL/CRITICAL/SUPERCRITICAL FLOW

The importance of gravity as a driving force in open channel
drainage systems makes its effect on the state of flow a
major factor for evaluation. This can be done using a ]
dimensionless parameter known as the Froude number, which is
expressed mathematically as:

Fr = (3-8)
VgL
where:
Fr = Froude number, dimensionless

v = Average velocity of flow, in feet/second

g = Acceleration due to gravity, 32.2 feet/
second?

L = Characteristic length, in feet (Hydraulic
depth as presented in Equation 3-3)



VOLUME 3--THEORY 1988

The Fr value is the dimensionless ratioc of inertial forces
to gravity forces. 1If Fr values are less than 1, gravity
forces dominate and the open channel is said to be operating
in the subcritical range of flow. 'This is sometimes called
tranquil flow and is characterized as relatively deep, low
velocity flow with respect to critical flow. Depth of flow
can be controlled at a downstream location.

If Fr values are greater than 1, inertial forces dominate
and the open channel is said to be operating in the super-
critical range of flow. This is also called rapid or
shooting flow and is characterized as relatively shallow,
high velocity flow with respect to critical flow. Depth of
flow can be controlled at an upstream location.

When the Fr value equals 1, inertial forces and gravity
forces are balanced and the open channel exhibits critical
flow. Additional information on critical flow conditions is
presented in Section 3.3.

3.2 MASS, ENERGY, AND MOMENTUM

The following three basic principles are generally applied
to open channel flow evaluations:

1. Conservation of mass
2. Conservation of energy
3. Conservation of linear momentum

3.2.1 MASS

The conservation of mass or continuity equation for
continuous steady flow can be expressed mathematically as:

Q = Av (3-9)
where:
Q = Discharge, in cfs
A = Cross~sectional area, in square feet

vV = Average channel velocity, in feet/second

:t r_\"p:,'
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For continuous unsteady flow, the continuity equation must
include time as a variable. Additional information on the
conservation of mass for unsteady flow can be obtained from
Chow (1959), Henderson (1966), or French (1985).

3.2.2 ENERGY

It can be useful at times to consider the total energy head
of an open channel. Because energy input must equal output,
the total energy head of two points in a channel reach will
equal one another. This equality is commonly known as the
energy equation, which is expressed as:

<

12 v,2

d, cos@ + == + z. = d. cos® + == + gz

1 2g 1= 9 79 (3-10)

2 + hloss

where:

d, and d, = Perpendicular depths of flow at channel
1 2 . , .
sections 1 and 2, respectively, in feet

© = Slope angle of the channel bottom, in
degrees

vy and Vo, = Average velocities at channel sections 1
and 2, respectively, in feet/second

g = Acceleration due to gravity, 32.2
feet/second?

zq and z, = Bottom elevations above an arbitrary
datum at channel sections 1 and 2,
respectively, in feet

= Head or energy loss between channel

h
loss sections 1 and 2, in feet

For small channel slopes (less than 1 percent), the Energy
Equation is expressed as:

v, 2 v,2
1 ~ 2
Yy T gg T E1 T Yyt ag

3 1 + z

g 2 + hloss (3-11)
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where:

Vertical depths of flow at channel

y . and y2
sections 1 and 2, respectively, in feet

it

vl and V2 Average velocities at channel sections 1

and 2, respectively, in feet/second

g = Acceleration due to gravity, 32.2
feet/second?
z1 and 22 = Bottom elevations above an arbitrary

datum at channel sections 1 and 2,
respectively, in feet

los = Head or energy loss between channel
0SS sections 1 and 2, in feet

When the head loss between channel sections is zero, either

Equation 3-10 or 3-11 can be referred to as the Bernoulli

eguation.

Equations 3-10 and 3-11 ignore that the actual velocity
distribution over a channel section is nonuniform (i.e.,
slow along the bottom and higher in the middle). When
nonuniform velocity distributions are considered, the
velocity head is generally greater than the value computed
using the average channel velocity. Kinetic energy
coefficients that can be used to account for nonuniform
velocity conditions at bridges are discussed in Chapter 7.

For typical prismatic channels with a fairly straight align-~
ment, the effect of disregarding the existence of a nonuni-
form velocity distribution is negligible, especially when
compared to other uncertainties involved in such calcula-
tions. Therefore, Equations 3-10 and 3-11 are appropriate
for most open channel problems. However, if velocity dis-
tributions are known or suspected to be non-typical, velo-
city coefficient adjustments should be considered.

Equations 3-10 and 3-11 also assume that the hydrostatic law
of pressure distribution is applicable. This law states
that the distribution of pressure over the channel cross
section is the same as the distribution of hydrostatic

Hopss?
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pressure; that is, that the distribution is linear with
depth. The assumption of a hydrostatic pressure distribu-
tion for flowing water is valid only if the flow is not
accelerating or decelerating in the plane of the cross
section. Thus, these equations should be restricted to
conditions of uniform or gradually varied nonuniform flow.
If the flow is known to be rapidly varying, other
relationships should be considered (e.g., momentum).

A longitudinal profile of total energy head elevations is
called the energy grade line (gradient). The longitudinal
profile of water surface elevations is the hydraulic grade
line (gradient). The energy and hydraulic grade lines for
uniform open channel flow are illustrated in Figure 3-1.

For flow to occur in an open channel, the energy grade line
must have a negative slope in the direction of flow. A
gradual decrease in the energy grade line for a given length
of channel represents the loss of energy caused by friction.
When considered together, the hydraulic and energy grade
lines reflect not only the loss of enerqgy by friction, but
also the conversion between potential and kinetic forms of
energy.

For uniform flow conditions, the energy grade line is par-
allel to the hydraulic grade line, which is parallel to the
channel bottom (see Figure 3-1). Thus, for uniform flow,

the slope of the channel bottom becomes an adequate basis

for the determination of friction losses. During uniform
flow, no conversions occur between kinetic and potential
forms of energy. If the flow is accelerating, the hydraulic
grade line would be steeper than the energy grade line, while

retarding flow would produce an enerqgy grade line steeper
than the hydraulic grade line.

3.2.3 MOMENTUM

According to Newton's Second Law of Motion, the change of
momentum per unit of time is equal to the resultant of all
external forces applied to the moving body. Application of
this principle to open channel flow produces a relationship
that is virtually the same as the energy equation expressed
in Equations 3-10 and 3-11. 1In theory, the two principles
are unique, primarily because energy is a scalar quantity
(magnitude only), while momentum is a vector gquantity
(magnitude and direction). 1In addition, the head loss
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determined by the energy equation measures the internal
energy dissipated in a particular channel reach, while the
momentum equation measures the losses caused by external
forces exerted on the water by the walls of the channel.
However, for uniform flow, since the losses caused by
external forces and internal energy dissipation are equal,
the momentum and energy equations give the same results.

Application of the momentum principle has certain advantages
for problems involving high changes of internal energy, such
as a hydraulic jump. Thus, the momentum principle should be
used to evaluate rapidly varied nonuniform flow conditions.
The hydraulic jump is a common method for accomplishing
energy dissipation at culvert, storm sewer, and channel
outlets. Energy dissipation is covered in Chapter 10.

3.3 CRITICAL FLOW

The energy content of flowing water with respect to the
channel bottom is often referred to as the specific enerqgy
head, which is expressed by the equation:

o

E =d + g— (3-12)

(e}

where:
E = Specific energy head, in feet
d = Depth of open channel flow, in feet
v = Average channel velocity, in feet/second

g = Acceleration due to gravity, 32.2
feet/second?

Considering the relative values of potential energy (depth)
and kinetic energy (velocity head) in an open channel can
greatly aid the hydraulic analysis of open channel flow
problems. These analyses are usually performed using a
curve showing the relationship between the specific energy
head and the depth of flow for a given discharge in a given
channel that can be placed on various slopes. The curve
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representing specific energy head for an open channel 1is
generally used to identify regions of supercritical and
subcritical flow conditions. This information can be help-
ful for performing hydraulic capacity calculations and
evaluating the suitability of channel linings and flow
transition sections.

3.3.1 SPECIFIC ENERGY AND CRITICAL DEPTH

A typical curve representing the specific energy head of an

open channel is illustrated in Figqure 3-2, Part B. The

straight diagonal line on this figure represents points

where the depth of flow and specific energy head are equal.

At such points the kinetic energy is zero; therefore, this

diagonal line is a plot of the potential energy, or energy

due to depth. The ordinate interval between the diagonal

line of potential energy and the specific energy curve for

the desired discharge is the velocity head, or kinetic

energy, for the depth in question. The lowest point on the
specific energy curve represents flow with the minimum

content of energy. The depth of flow at this point is known

as the critical depth. The general equation for determining {i)
the critical depth is expressed as: )

3%}
w

(3-13)

LQ,!O
|
’-i'b’

where:
Q = Discharge, in cfs

g = Acceleration due to gravity, 32.2 feet/
second?

A = Cross-sectional area, in square feet

T = Top width of water surface, in feet
Critical depth for a given channel can be calculated through
trial and error with Equation 3-13. However, in practice,
it may be computed more easily by using either the equations

for selected channel cross sections or the critical depth .
charts presented in Volume 2. Chow (1959) presents a _ }

14
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procedure for the analysis of critical flow that uses the
critical flow section factor, Z, as defined by Equation 3-5.

Using the definition of the critical section factor and a
velocity distribution coefficient of one, the eguation for
critical flow conditions is:

z = £ (3-14)
v g
where:
Z = Critical flow section factor
(see Equation 3-5)
Q = Discharge, in cfs
g = Acceleration due to gravity, 32.2 feet/

second?2

When the discharge is known, Equation 3-14 gives a value for
the critical section factor, allowing Equation 3-5 to be
solved for the critical depth. Conversely, when the criti-
cal section factor is known, the discharge can be calculated
by rearranging Equation 3-14.

The determination of critical depth is independent of the
channel slope and roughness, because critical depth
represents a depth for which the specific energy head is a
minimum. According to Equation 3-13, the magnitude of
critical depth depends only on the discharge and the shape
of the channel. Thus, any given size and shape of channel
has only one critical depth for the given discharge, which
is independent of the channel slope or roughness. However,
if Z is not a single-valued function of depth, it is
possible to have more than one critical depth. For a given
value of specific energy, the critical depth results in the
greatest discharge, or conversely, for a given discharge,
the specific energy is a minimum for the critical depth.

3.3.2 CRITICAL VELOCITY

The velocity at critical depth is called the critical
velocity. An equation for determining the critical velocity
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in an open channel of any cross section is expressed as:

v, = /g d (3-15)
where:
v, = Critical velocity, in feet/second
g = Acceleration due to gravity, 32.2 feet/
second?
drn = Mean depth of flow or equivalent depth, de,

for pipes, in feet, calculated from
Equation 3-3 or 3-4

3.3.3 SUPERCRITICAL FLOW

For conditions of uniform flow, the critical depth, or point
of minimum specific energy, occurs when the channel slope
equals the critical slope (i.e., the normal depth of flow in
the channel is critical depth). When channel slopes are
steeper than the critical slope and uniform flow exists, the
specific energy head is higher than the critical value,
because of the higher values of the velocity head (kinetic
energy). This characteristic of open channel flow is
illustrated by the specific head curve segment to the left
of critical depth in Figure 3-2, Part B, and is known as
supercritical flow. Supercritical flow is characterized by
relatively shallow depths and high velocities, as shown in
Figure 3-2, Part A. If the natural depth of flow in an open
channel is supercritical, the depth of flow at any point in
the channel may be influenced by an upstream control
section. The relationship of supercritical flow to the
specific energy curve is shown in Figure 3-2, Parts A and B.

3.3.4 SUBCRITICAL FLOW

When channel slopes are flatter than the critical slope and
uniform flow exists, the specific energy head is higher than
the critical value, because of the higher values of the
normal depth of flow (potential energy). This characteris-
tic of open channel flow is illustrated by the specific head
curve segment to the right of critical depth in Figure 3-2,
Part B, and is known as subcritical flow. Subcritical flow

T
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is characterized by relatively large depths with low veloci-
ties, as shown in Figure 3-2, Part C. If the natural depth
of flow in an open channel is subcritical, the depth of flow
at any point in the channel may be influenced by a down-
stream control section. The relationship of subcritical
flow to the specific energy curve is shown in Figure 3-2,
Parts B and C.

3.3.5 SPECIFIC ENERGY CONSIDERATIONS

Several points about Figure 3-2 should be noted. First, at
depths of flow near the critical depth for any discharge, a
minor change in specific energy will cause a much greater
change in depth. Second, velocity head for any discharge in
the subcritical portion of the specific energy curve in
Figure 3-2, Parts A and B, is relatively small when compared
to specific energy. For this subcritical portion of the
specific energy curve, changes in depth of flow are approxi-
mately equal to changes in specific energy. Finally, the
velocity head for any discharge in the supercritical portion
of the specific energy curve increases rapidly as depth
decreases. For this supercritical portion of the specific
energy curve, changes in depth are associated with much
greater changes in specific energy.

3.4 UNIFORM FLOW

Although steady uniform flow is rare, it is practical in
many cases to assume that uniform flow occurs in appropriate
segments of an open channel system. The results obtained
from calculations based on this assumption will be approxi-

mate and general, but can often provide satisfactory
solutions.

3.4.1 MANNING'S EQUATION

The hydraulic capacity of an open channel is usually deter-
mined through application of Manning's Equation, which
determines the average velocity when given the depth of flow
in a uniform channel cross section. Given the velocity, the
capacity, Q, is calculated as the product of velocity and
cross—-sectional area (see Equation 3-9).

98]
]
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Manning's Equation is an empirical equation in which the
values of constants and exponents have been derived from
experimental data for turbulent flow conditions. According
to Manning's Equation, the mean velocity of flow is a func-
tion of the channel roughness, the hydraulic radius, and the
slope of the energy gradient. As noted previously, for uni-
form flow, the slope of the energy gradient is assumed to be
equal to the channel bottom slope. Manning's Equation is
expressed mathematically as:

§ 1549 R2/3 S1/2 (3-16)
or

0 = 1549 AR2/3 S1/2 (3-17)
where:

v = Average channel velocity, in feet/second
Q = Discharge, in cfs
n = Manning's roughness coefficient

R = Hydraulic radius of the channel, in feet,
calculated using Equation 3-2

S = Slope of the energy gradient, in feet/foot

A = Cross-sectional area of the open channel, in
square feet

A detailed discussion of procedures for solving Manning's
Equation is presented in Volume ,2.

3.4.2 BEST HYDRAULIC SECTION

The best hydraulic section of an open channel can be deter-
rined mathematically by using the continuity equation of
open channel flow (Equation 3-9) and Manning's Equation
(Equation 3-17). According to the continuity equation, if
the cross-sectional area is to be a minimum, the velocity

O
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must be a maximum for any given cross-sectional area.
According to Manning's Equation, the velocity is a maximum
for a given cross section and channel slope when the
hydraulic radius is a maximum. The hydraulic radius is a
maximum when the wetted perimeter is minimized for a given
cross—-sectional area (see Equation 3-2).

It can be shown mathematically that the hydraulic cross
section that maximizes the velocity, and thus minimizes the
area required to convey a given discharge, is a semicircle
(see Streeter, 1971, or Chow, 1959). Therefore, the best
trapezoidal hydraulic section is one that approximates a
semicircle (see Figure 3~3, Part a). For the special case
in which the trapezoid is a rectangle, the best shape is
that for which the width is twice the depth (see Figure 3-3,
Part b).

In practice, the best hydraulic section of an open channel
may be altered from the mathematically ideal cross section
to account for the following factors:

1. The average velocity of the best hydraulic section
should not exceed the maximum permissible velocity

for the channel bottom in question.

2. The best hydraulic section may not produce the
minimum total excavation if a significant
overburden must be removed.

3. The proportions of an open channel may vary widely

without significantly changing the required
hydraulic elements.

4. The cost of excavation is not solely dependent on
the amount of material removed. Considerations
such as the ease of access and disposal may be
more important than the volume of material
excavated.

5. The method of construction or available equipment
that will be used can affect the type of
excavation.
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(b) Rectangular

. FIGURE 3-3
Best Hydraulic Sections for Trapezoidal and Rectangular Channels
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3.5 NONUNIFORM FLOW

In the vicinity of changes in the channel section or slope
that will cause nonuniform flow profiles, the direct solu-
tion of Manning's Equation is not possible, since the energy
gradient for this situation does not equal the channel
slope. Three typical examples of nonuniform flow are illus-
trated in Figures 3-4 through 3-6. The following sections
describe these nonuniform flow profiles and briefly explain
how the total head line is used for approximating these
water surface profiles in a gualitative manner. For
gradually varied flow, the direct step and standard step
methods for performing backwater calculations are discussed.
The hydraulic jump is discussed for rapidly varied flow.

3.5.1 GRADUALLY VARIED FLOW

A channel on a mild slope (subcritical) éischarging into a
reservoir or pool is illustrated in Figure 3-~4. The
vertical scale is exaggerated for clearer illustration.

Cross Section 1 is located upstream of the pool, where uni-
form flow occurs in the channel, and Cross Section 2 is
located at the beginning of a level pool. The depth of flow
between Sections 1 and 2 is changing, and the flow is non-
uniform. The water surface profile between the sections is
known as a backwater curve referred to as an Ml curve, and
is characteristically very long.

A channel in which the slope changes from subcritical (mild)
to supercritical (steep) is illustrated in Figure 3-5. The
flow profile passes through critical depth near the break in
slope (Section 1). This is true whether the upstream slope
is mild, as in the sketch, or the water above Section 1 is
ponded, as would be the case if Section 1 were the crest of
a spillway of a dam. If, at Section 2, the total head were
computed, assuming normal depth on the steep slope, it would
plot (Point a in Figure 3-5) above the elevation of total
head at Section 1. This is physically impossible, because
the total head line must slope downward in the direction of
flow. The actual total head line will take the position
shown and have a slope approximately equal to S at

Section 1 and approaching S farther downstream® The drop
in the total head line, h , between Sections 1 and 2

o
— , loss .
represents the loss in enérgy due to friction.
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Water Surface i

Total Head Line
M1 Curve

| Pool Level
]

Reference: USDOT, FHWA, HDS-3 (1961).
FIGURE 3-4

Nonuniform Water Surface Profile for Downstream Control Caused by
a Flow Restriction

Total Head Computed
for Normal Depth on

M2 ' a
Curve ™~ %J- Steep Stope
s A\ —— \(

Acutal Total
Head Line

leference: USDOT, FHWA, HDS-3 (1961).

FIGURE 3-5
Nonuniform Water Surface Profile Caused by a Change in Slope Conditions

V2 Total Head for Normal Depth
29 ~ /

leference: USDOT, FHWA, HDS-3 (1961).
FIGURE 3-6

Nonuniform Water Surface Profile Caused by a Hydraulic Jump
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At Section 2, the actual depth, d_, is greater than normal
depth, d_, because sufficient accéleration has not occurred,
and the gssumption of normal depth at this point would
clearly be in error. As Section 2 is moved downstream, so
that total head for normal depth drops below the pool
elevation above Section 1, the actual depth quickly
approaches the normal depth for the steep channel. This
type of water surface curve (Section 1 to Section 2) is
referred to as an S2 curve and is characteristically much
shorter than the M1 backwater curve discussed previously.

Another common type of nonuniform flow is the drawdown curve

to critical depth that occurs upstream from Section 1
(Figure 3-5) where the water surface passes through critical
depth. The depth gradually increases upstream from critical
depth to normal depth, provided that the channel remains
uniform over a sufficient distance. The length of the draw-
down curve, referred to as an M2 curve, is much longer than

the curve from critical depth to normal depth in the steep
channel.

Direct Step Method

For prismatic channels, when the resistance coefficient and
shape are constant with distance, gradually varied water
surface profiles can be calculated using the direct step
method. This method calculates a water surface profile by
determining the distance between cross sections with speci-
fied flow depths. The friction slope can be calculated
using the following equation:

2 2
n v
S¢ = 4/3 (3-18)
2.22 R
where:
Sf = Friction slope, in feet/foot

n = Manning's n value
v = Average velocity, in feet/second

R = Hydraulic radius, in feet
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The length of channel between sections with specified flow _ fﬁ)
depths is calculated as: h

AX = (3-19)

where:

Ax = Channel distance between sections with
specified flow depths, in feet

AE = Change in specific energy between sections
(depth plus velocity head), in feet

SO = Bottom slope, in feet/foot

Sf = Friction slope, in feet/foot

A step-by-step procedure, tabulation form, and example pro-
blem for the direct step method are presented in Volume 2.

Standard Step Method

W/

A procedure suitable for calculating gradually varying water
surface profiles when the channel cross section and resis-
tance coefficient vary with distance is the standard step
method. This method provides an estimate of the depth of
flow at specified longitudinal distances.

The friction slope can be calculated using Equation 3~18.
The friction loss in a specified channel reach length is
calculated as:

g
i
wf

AX (3-20)

where:

hf = Friction loss for a reach length of 4x, in
feet

vl
]

£ Average friction slope between sections for
reach length Ax, in feet/foot

Ax = Channel reach length, in feet
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The eddy loss, which can be significant in non-prismatic
channels, can be calculated using the following equation:

v2
he = ke 29 (3-21)
where:
he = Eddy losses, in feet
ke = Eddy loss coefficient

v = Average velocity, in feet/second

g = Acceleration due to gravity, 32.2 feet/
second

For gradually converging and diverging reaches, ke is 0 to
0.1 and 0.2, respectively. For abrupt expansions and
contractions, k_1s about 0.5. For prismatic and regular
channels, k_ = 0 (Chow, 1959).

A trial and error procedure based on an assumed depth is
required to develop the water surface profile. The correct
solution for a given section is obtained when the total head
based on velocity and depth is equal to the total head based
on friction losses (Equation 3-10) and eddy losses

(Equation 3-21).

A step-by-step procedure, tabulation form, and example
problem for the standard step method are presented in
Volume 2.

3.5.2 RAPIDLY VARIED FLOW

A hydraulic jump occurs when a steep (supercritical) channel
discharges into a reservoir or pool. This special case
condition is illustrated in Figure 3-6. A hydraulic jump
makes a dynamic transition from the supercritical flow in
the steep channel to the subcritical flow in the pool. This
situation differs from that shown in Figure 3-4 in that the
flow approaching the pool in Figure 3-6 is supercritical

and the total head in the approach .channel is large, rela-
tive to the pool depth. 1In general, supercritical flow can
be changed to subcritical flow only by passing through a
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hydraulic jump. The violent turbulence in the jump dissi- €f}
pates energy rapidly, causing a sharp drop in the total head h
line between the supercritical and subcritical states of

flow. A Jjump will occur whenever the ratio of the depth in

the approach channel, d., to the depth in the downstream

channel, d,, reaches a specific value. 1In Figure 3-6,

normal depth in the approach channel persists beyond the

point where the projected pool level would intersect the

water surface of the channel at normal depth. Normal depth

can be assumed to exist on the steep slope upstream from

Section 1, which is located at about the toe of the jump.

The relationship between variables for a hydraulic jump can
be expressed as:

5 0.5
d2 (1 + 8Fr 1) -1
v: . (3~-22)
1 2
where:

d2 = Depth below jump, in feet ;f)
d1 = Depth above jump, in feet
Fr = Froude number above jump, dimensionless (see

Equation 3-8)

Additional discussion on the use of hydraulic jumps to
dissipate energy is presented in Chapter 10. Detailed
information on the quantitative evaluation of hydraulic jump
conditions in open channels is available in publications by
Chow (1959), Henderson (1966), French (1985), and Streeter
(1971), and in HEC-14 from USDOT, FHWA (1983). 1In addition,
handbooks by Brater and King (1976) and the USDA, SCS
(NEH~5, 1956) may be useful.

3.6 CHANNEL STABILIZATION

3.6.1 IMPROVEMENTS

While quantification of the effects of channel improvements
is difficult, qualitative assessment of possible impacts and
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appropriate action are required for all channel modifica-
tions. The proportionality given below provides a basis for
qualitative assessment of stream modifications; the two
sides will adjust to maintain a constant proportion.

QS « QstO (3=-23)
where:
Q = Typical or dominant discharge, in cfs
S = Energy slope, in feet/foot
QS = Sediment transport, in pounds/second
@50 = Sediment mean parti¢le diameter, in feet

Thus, 1if a check dam is built across a stream, Q decreases.
Assuming Q and d remain constant, the slope must decrease
to maintain the proportionality. The result is scour
downstream from the dam and deposition upstream.

If a bend in a stream is straightened or a rough channel is
paved the slope is steepened. If S increases, either QS or
or both must also increase. The result is generally
agvanc1ng scour upstream, higher velocities through the
reach with associated channel deterioration, scour just

below the reach, and eventual deposition downstream.

A tributary carrying excess sediment resulting from
construction will tend to block the main channel, raising
flow levels upstream and causing deposition downstream. The
cause is an increased Q in the reach, with a resulting
increase in S in the downstream direction.

Urbanization tends to increase the amount of water flowing
in a channel for any given storm frequency (i.e., Q
increases). A channel in Nashville tends to adjust its size
to carry the 2~ to 5-year storm within its banks, Thus,
urbanization tends to cause not only increased flooding but
increased channel size through bed bank erosion.

The sediment transport capacity of the stream will be

approximately constant throughout the stream when neither
aggradation nor deposition occurs. Bars may form and

27

w
1
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disappear and the outside of bends may show caving, but the . {j)
general form of the stream is a constant. An estimate of :
sediment transport capacity in coarse sand and gravel bed

streams can be made from the Meyer-Peter and Mueller

formula (Simons and Senturk, 1977), expressed as:

QS = 600W (1t - 1 ) (3-24)

where:

L @]
f

Bedload sediment discharge, in tons/day
W = Channel width, 1in feet
t = Channel shear = y RS, in pounds/square foot

Yy = Specific weight of water, 62.2 pounds/cubic
foot

R = Hydraulic radius, in feet

S = Channel slope, in feet/foot \;)
1 = Critical shear = 4.82d50, in pounds/square
¢ foot

d50 = Sediment mean particle diameter, in feet

This formulation assumes that the sediment has a specific
gravity of 2.65, which is common for quartz rock. Addi-
tional information on channel aggradation and degradation
can be found in Chapter 7.

3.6.2 RIPRAP

Riprap design will be influenced by one of three different
types of flow conditions. 1In Type I flow, the velocity in
the upstream channel is higher than in the riprap-lined
reach. Riprap size will be determined by the faster up-
stream velocity. The stone roughness can be expected to
slow the velocity enough within a transition length of about
75 to 100 times 4 to design for Type II flow conditions

for the remainder of the reach. ? ?
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Type II flow occurs when the velocity in the riprap-lined
reach is expected to be higher than the upstream channel
velocity. A typical example is a broad, deep channel dis-
charging into a shallow, narrow reach. Designing riprap for
Type II flow is an iterative process. A stone size and asso-
ciated roughness value are assumed, velocity calculated based
on the roughness value, and a stone size determined., The
calculations are repeated until the assumed and computed
stone sizes are reasonabley close.

Type III flow is encountered when the turbulence acting to
dislodge the stone is not generated by general boundary
shear but by abrupt changes in boundary geometry. 1In such
cases, a general riprap design procedure is not possible.
Application of experienced engineering judgment, specific
designs (e.g., stilling basin design), or the selection of
conservative parameters are possible options.

The procedure given in Volume 2 is an adaptation of basic
research performed by S. T. Maynord (1987) at the Waterways
Experiment Station and developmental work by A. J. Reese

(1984 and 1988). The original equation developed by Maynord
(1987) is expressed as:

[ y 0.5 v 2.5
oo [p5) =]t e
30 -y 0.5
YS Y (gD)
where:
d30 = Diameter of stone for which 30 percent, by

weight, of the gradation is finer, in feet
D = Depth of flow above stone, in feet

vV = Mean point velocity above the stone, in
feet/second

Y. = Specific weight of stone, in pounds/cubic
foot

Y = Specific weight of water, 62.4 pounds/cubic
foot

9 = Acceleration due to gravity, 32.2 feet/
second?

3-29
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The C factor is 0.30 for the bottoms of straight prismatic
channels and both bottoms and sides of curved channels. The
depth is the depth to the top of rock at the point in ques-
tion (usually the toe of the side slope) and the velocity is
the mean point velocity. The C factor for side slopes of
straight prismatic channels is 0.24. With a safety factor,
a general constant is given as 0.36, yielding a 1.2 safety
factor for the former case and 1.5 for the latter. The C
factor is a constant when da is used as the representative
stone size but varies with 85/d15 when d50 is used.

If it is assumed that the specific weight of the stone is

165 (a typical value for Nashville), the following equation
is developed:

o 245
d,,/D = 0.193 ( :) _ (3-26)
YgD

where:

o
i

30 Diameter of stone for which 30 percent, by
weight, of the gradation is fine, in feet

D = Depth of flow above stone, in feet

|
v = Mean point velocity above the stone, in feet
g = Acceleration due to gravity, 32.2 feet/

second?

Since d50 is the size typically recognized in design, the
d30 size from Equation 3-26 can be converted to d by
assuming that for typical ranges of d85/d15 (2—2.3?, d50 =
1.20 d30.

Correction factors for a different specific weight and for
placement in a bend were derived through the use of the
concept of effective velocity. The correction factors are
used to establish an effective velocity when site~specific
conditions deviate from the base condition. The correction
factors actually represent a ratio of the effective velocity
and the actual velocity. The base conditions are for
thickness equal to leO and mean point velocity in a
straight channel.
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To correct for different specific weights, the following
equation is used:

0.5
102.6
c = 3-27
g <(y - 62.4)) { )
s
where:
Cg = Correction coefficient for specific weight
Y. = Specific weight of selected riprap, in

pounds/cubic foot

A graphical solution to this equation is presented in
Volume 2. Egquation 3-26 requires using a point velocity
over the toe. For straight channels, an adequate estimate
of point velocity is the average velccity in the main
portion of the channel. This is different from the mean
velocity for the entire channel cross section when flow
exceeds the banks of the main channel (e.g., flood plains)
and if flow is slowed considerably out to about 0.5 times
the main channel depth. Thus, in most cases, the channel
should be broken into segments or some rule of thumb used to
adjust the mean channel velocity. The ratic of mean channel
velocity to point mean velocity over the toe for prismatic
channels ranges from 1.1 to 1.3 and for natural channels
from 1.3 to 1.5. 1In all cases, the greater the bank-bed
roughness difference and relative flew area above the side
slopes, the greater the adjustment required.

A second factor is required to account for the special
conditions encountered in a bend. Typically, the point
velocity in a bend is about 1.1 to 1.5 times the average
velocity for a straight channel section including overbank
flow. The U.S. Army Corps of Engineers (1970) provide
information from various sources concerning the velocity

increase for bends. A graphical approach is presented in
Volume 2.

Maynord (1987) also showed that, for a range of d__/d from
2.0-2.32, a thickness of stone greater than the typicai d

could allow for a smaller stone size. A graphical relation-
ship to account for this adjustment is presented in Volume 2.





