SUMD RFP Data Requirements and Specifications

General Requirements

1.

Vendor shall be required to provide data on the entire fleet operating in the
Metropolitan Government of Nashville & Davidson County service area.

The Metropolitan Government is able to publish real-time SUMD availability data to the
public.

Vendor consents and agrees the Metropolitan Government of Nashville & Davidson
County owns all data collected from Vendors. Metropolitan Government of Nashville &
Davidson County will share anonymized data as it deems necessary to include public APIs.
Vendor shall include in terms of use that customers also consent that trip data will be
shared with the Metropolitan Government and become public record. (All data will be
anonymized).

Vendor shall support both Agency and Provider APl consistent with version 0.3 of the
Mobility Data Specification.

Vendor will be required to support updated releases on Metropolitan Government of
Nashville & Davidson County’s schedule.

a. The ITS Department of Metropolitan Government of Nashville & Davidson County
will be the Technology contact for all data related issues.

b. Vendors will be required to support updated releases within 30 days of
notification from the ITS Department of Metropolitan Government of Nashville &
Davidson County.

c. Vendor will be required to support the current version until the upgrade has been
tested and accepted by Metropolitan Government of Nashville & Davidson
County.

Vendor shall be required to provide anonymized real-time trip and telemetry information
with GPS coordinates collected at an interval not exceeding 30 seconds with an accuracy
of at least 5 decimal places for the entire trip. Intervals of less than 30 seconds are
preferred.

Vendor will provide all status changes of all vehicles in the service area regardless time
duration or trip distance.

Vendor will Implement and enforce geo-fenced parking, “no-ride”, and “slow-ride”
restricted areas.

a. Metropolitan Government of Nashville & Davidson County will provide GIS
information for these areas.

b. Metropolitan Government of Nashville & Davidson County may add, change
and delete restricted areas at any time. Vendor is required to implement
requested update within 48 hours.

¢. Vendor will provide daily reports of all violations.

10. The vendor shall be required to provide a data feed capable of delivering up to 2 years of

historical data meeting all data requirements listed above.

11. The vendor shall be required to provide working automated sample code with the right

security tokens to access the data feed.

12. The vendor shall be required to provide direct telephone and email access to a

technical contact(s) for set-up and trouble issues.

SUMD RFP Data Requirements and Specifications

13. An edited copy of version 0.3 of the Mobility Data Specification is provided in exhibit
?, indicating which “optional” data elements are instead “required” by Metropolitan
Government of Nashville & Davidson County.

14. Note: In the tables below for the "Required/Optional” columns, an entry of “Required*”
represents a field that was “Optional” in the base MDS guidelines but has been deemed as
"Required” by Metropolitan Government of Nashville & Davidson County,

15.

Mobility Data Specification: Provider

This specification contains a data standard for mobility as a service providers to define a RESTful API for
municipalities to access on-demand.

General Information

The following information applies to all provider APl endpoints. Details on providing authorization to
endpoints is specified in the auth document.

Currently, the provider APl is implemented for dockless scooter and bikeshare. To implement another mode,
add it to the schema/generate_schema.py file and this README and submit a pull request.

Versioning
provider APIs must handle requests for specific versions of the specification from clients.

Versioning must be implemented through the use of a custom media-type, application/vnd.mds.provider+json,
combined with a required version parameter.

The version parameter specifies the dot-separated combination of major and minor versions from a

published version of the specification. For example, the media-type for version 0.2.1 would be specified as
application/vnd.mds.provider+json;version=0.2

Note: Normally breaking changes are covered by different major versions in semver notation. However, as
this specification is still pre-1.0.0, changes in minor versions may include breaking changes, and therefore are
included in the version string.

Clients must specify the version they are targeting through the Accept header. For example:

Accept: application/vnd.mds.provider+json;version=0.3
Since versioning was not added until the 0.3.0 release, if the Accept header is application/json or not set in the
request, the provider APl must respond as if version 0.2 was requested.

Responses to client requests must indicate the version the response adheres to through the Content-Type
header. For example:

Content-Type: application/vnd.mds.provider+json;version=0.3
Since versioning was not added until the 0.3.0 release, if the Content-Type header is application/json or not set in
the response, version 0.2 must be assumed.

If an unsupported or invalid version is requested, the APl must respond with a status of 406 Not Acceptable. If
this occurs, a client can explicitly negotiate available versions.

A client negotiates available versions using the OPTIONS method to an MDS endpoint. For example, to check if
trips supports either version 0.2 or 0.3 with a preference for 0.2, the client would issue the following request:

SUMD RFP Data Requirements and Specifications

OPTIONS /trips/ HTTP/1.1
Host: provider.example.com
Accept: application/vnd.mds.provider+json;version=0.2,application/vnd.mds.provider+json;version=0.3;q=0.9

The response will include the most preferred supported version in the Content-Type header. For example, if
only 0.3 is supported:

Content-Type: application/vnd.mds.provider+json;version=0.3
The client can use the returned value verbatim as a version request in the Accept header.

Response Format

The response to a client request must include a valid HTTP status code defined in the IANA HTTP Status Code
Registry. It also must set the Content-Type header, as specified in the Versioning section.

Response bodies must be a UTF-8 encoded JSON object and must minimally include the MDS version and a data
payload:

{

"version": "x.y.z",
"data": {

"trips": [{
"provider_id": "...",
"trip_id": "...",

1

}
}

All response fields must use lower_case_with_underscores.

JSON Schema
MDS defines JSON Schema files for trips and status_changes.

provider APl responses must validate against their respective schema files. The schema files always take
precedence over the language and examples in this and other supporting documentation meant for human
consumption.

Pagination
provider APIs may decide to paginate the data payload. If so, pagination must comply with the JSON API
specification.

The following keys must be used for pagination links:

e first: url to the first page of data

e last: url to the last page of data

e prev: url to the previous page of data
e next: url to the next page of data

At a minimum, paginated payloads must include a next key, which must be set to null to indicate the last page
of data.

{

"version": "x.y.z",
"data": {
"trips": [{
"provider_id": "...",
"trip_id": "...",

SUMD RFP Data Requirements and Specifications

1

b

"links": {
"first": "https://...",
"last": "https://...",
"prev": "https://...",
"next": "https://..."

}

}

UUIDs for Devices

MDS defines the device as the unit that transmits GPS or GNSS signals for a particular vehicle. A given device
must have a UUID (device_id below) that is unique within the Provider's fleet.

Additionally, device_id must remain constant for the device's lifetime of service, regardless of the vehicle
components that house the device.

Geographic Data
References to geographic datatypes (Point, MultiPolygon, etc.) imply coordinates encoded in the WGS 84
(EPSG:4326) standard GPS or GNSS projection expressed as Decimal Degrees.

Whenever an individual location coordinate measurement is presented, it must be represented as a GeoJSON
Feature object with a corresponding timestamp property and Point geometry:

{
"type": "Feature",
"properties": {
"timestamp": 1529968782421
2
"geometry": {
"type": "Point",
"coordinates": [
-118.46710503101347,
33.9909333514159
]
}
}

Intersection Operation
For the purposes of this specification, the intersection of two geographic datatypes is defined according to
the ST_Intersects PostGIS operation

If a geometry or geography shares any portion of space then they intersect. For geography -- tolerance is
0.00001 meters (so any points that are close are considered to intersect).

Overlaps, Touches, Within all imply spatial intersection. If any of the aforementioned returns true, then the
geometries also spatially intersect. Disjoint implies false for spatial intersection.

Municipality Boundary

Municipalities requiring MDS Provider APl compliance should provide an unambiguous digital source for the
municipality boundary. This boundary must be used when determining which data each provider APl endpoint
will include.

The boundary should be defined as a polygon or collection of polygons. The file defining the boundary should
be provided in Shapefile or GeoJSON format and hosted online at a published address that all providers and
provider APl consumers can access and download.

SUMD RFP Data Requirements and Specifications

Timestamps
References to timestamp imply integer milliseconds since Unix epoch. You can find the implementation of unix

timestamp in milliseconds for your programming language here.

Trips

A trip represents a journey taken by a mobility as a service customer with a geo-tagged start and stop point.

The trips endpoint allows a user to query historical trip data.

Unless stated otherwise by the municipality, the trips endpoint must return all trips with a route which
intersects with the municipality boundary.

Endpoint: /trips

Method: GET

Schema: trips schema
data Payload: { "trips": [] }, an array of objects with the following structure

Field Type Required/Optional Comments
provider_id uulD Required A UUID for the Provider, unique within MDS
provider_name String Required The public-facing name of the Provider
device_id uuiD Required A unique device ID in UUID format
o . . The Vehicle Identification Number visible on the
vehicle_id String Required S
vehicle itself
vehicle_type Enum Required See vehicle types table
propulsion_type Enuml] Required Array of propulsion types; allows multiple values
trip_id uuliD Required A unique ID for each trip
trip_duration Integer Required Time, in Seconds
trip_distance Integer Required Trip Distance, in Meters
route GeolSON) Required See Routes detail below
FeatureCollection
accuracy Integer Required Th.e app.ro>.<|mate level of accuracy, in meters, of
Points within route
start_time timestamp Required
end_time timestamp Required
o . . Date/time that trip became available through the
publication_time timestamp Required . .
trips endpoint
parking_verification_urlString Optional A UBL toa p.hOto (or other evidence) of proper
vehicle parking
standard cost Integer Required The cost, in cents, that it would cost to perform
- g q that trip in the standard operation of the System
. The actual cost, in cents, paid by the customer of
actual_cost Integer Required

Trips Query Parameters
The trips API should allow querying trips with a combination of query parameters.

e device_id
e vehicle_id

the mobility as a service provider

e min_end_time: filters for trips where end_time occurs at or after the given time
e max_end_time: filters for trips where end_time occurs before the given time

SUMD RFP Data Requirements and Specifications

When multiple query parameters are specified, they should all apply to the returned trips. For example, a
request with ?min_end_time=1549800000000&max_end_time=1549886400000 should only return trips whose end
time falls in the range [1549800000000, 1549886400000).

Vehicle Types

vehicle_type

bicycle

scooter

Propulsion Types

propulsion_type Description

human Pedal or foot propulsion

electric_assist Provides power only alongside human propulsion
electric Contains throttle mode with a battery-powered motor

combustion Contains throttle mode with a gas engine-powered motor

A device may have one or more values from the propulsion_type, depending on the number of modes of
operation. For example, a scooter that can be powered by foot or by electric motor would have the
propulsion_type represented by the array ['human’, 'electric']. A bicycle with pedal-assist would have the
propulsion_type represented by the array ['human’, 'electric_assist'] if it can also be operated as a traditional
bicycle.

Routes
To represent a route, MDS provider APls must create a GeoJSON FeatureCollection, which includes every
observed point in the route, even those which occur outside the municipality boundary.

Routes must include at least 2 points: the start point and end point. Routes must include all possible GPS or
GNSS samples collected by a Provider. Providers may round the latitude and longitude to the level of
precision representing the maximum accuracy of the specific measurement. For example, a-GPS is accurate
to 5 decimal places, differential GPS is generally accurate to 6 decimal places. Providers may round those
readings to the appropriate number for their systems.

"route": {
"type": "FeatureCollection",
"features": [{

"type": "Feature",
"properties": {
"timestamp": 1529968782421
2
"geometry": {
"type": "Point",
"coordinates": [
-118.46710503101347,
33.9909333514159

"type": "Feature",
"properties": {
"timestamp": 1531007628377
2
"geometry": {
"type": "Point",
"coordinates": [
-118.464851975441,

SUMD RFP Data Requirements and Specifications

33.990366257735
]
}
1
1

Status Changes
The status of the inventory of vehicles available for customer use.

The status changes endpoint allows a user to query the historical availability for a system within a time range.

Unless stated otherwise by the municipality, this endpoint must return only those status changes with a
event_location that intersects with the municipality boundary.

Note: As a result of this definition, consumers should query the trips endpoint to infer when vehicles enter or
leave the municipality boundary.

Endpoint: /status_changes

Method: GET

Schema: status_changes schema

data Payload: { "status_changes": [] }, an array of objects with the following structure

Field Type Required/Optional Comments
provider_id uuiD Required A UUID for the Provider, unique within MDS
provider_name String Required The public-facing name of the Provider
device_id uuiD Required A unique device ID in UUID format
L . . The Vehicle Identification Number visible on the vehicle
vehicle_id String Required .
itself
vehicle_type Enum Required see vehicle types table
propulsion_type Enum([] Required Array of propulsion types; allows multiple values
event_type Enum Required See event types table
. Reason for status change, allowable values determined by
event_type_reasonEnum Required
event type
event_time timestamp Required Date/time that event occurred at. See Event Times
. . . Date/time that event became available through the status

publication_time timestamp . .

Required changes endpoint

. GeoJSON .
event_location) Required
Point Feature

Required if Percent battery charge of device, expressed between 0
battery pct Float .

Applicable and 1

Required if Trip UUID (foreign key to Trips API), required if

iated tri . .

associated_trip UUID Applicable event_type_reason is user_pick_up or user_drop_off, or for any

other status change event that marks the end of a trip.

Event Times

Because of the unreliability of device clocks, the Provider is unlikely to know with total confidence what time
an event occurred at. However, they are responsible for constructing as accurate a timeline as possible. Most
importantly, the order of the timestamps for a particular device's events must reflect the Provider's best
understanding of the order in which those events occurred.

Status Changes Query Parameters
The status_changes APl should allow querying status changes with a combination of query parameters.

SUMD RFP Data Requirements and Specifications

e start_time: filters for status changes where event_time occurs at or after the given time
e end_time: filters for status changes where event_time occurs before the given time

When multiple query parameters are specified, they should all apply to the returned status changes. For
example, a request with ?start_time=1549800000000&end_time=1549886400000 should only return status changes
whose event_time falls in the range [1549800000000, 1549886400000).

Event Types
event_type Description event_type_reason Description
. . Device introduced into service at the

. A device becomes available for . L .

available service_start beginning of the day (if program does not
customer use
operate 24/7)
user_drop_off User ends reservation

rebalance_drop_off Device moved for rebalancing

Device introduced into service after being

removed for maintenance

The administrative agency (ie, DOT) drops a

agency_drop_off device into the PROW using an admin code or
similar

maintenance_drop_off

A customer reserves a device) .
reserved . user_pick_up Customer reserves device

(even if trip has not started yet)

A device is on the street but
unavailablebecomes unavailable for maintenance

customer use

A device is no longer available due to
equipment issues

A device is no longer available due to

low_battery insufficient battery
A device is removed from the Device removed from street because service
removed street and unavailable for service_end has ended for the day (if program does not
customer use operate 24/7)

Device removed from street and will be placed
at another location to rebalance service
Device removed from street so it can be
worked on

The administrative agency (ie, DOT) removes a
device using an admin code or similar

rebalance_pick_up
maintenance_pick_up

agency_pick_up

Realtime Data

All MDS compatible provider APls must expose a public GBFS feed as well. Given that GBFS hasn't fully evolved
to support dockless mobility yet, we follow the current guidelines in making bike information avaliable to the
public.

e gbfs.json is always required and must contain a feeds property that lists all published feeds
e system_information.json is always required

e free_bike_status.json is required for MDS

e station_information.json and station_status.json don't apply for MDS

SUMD RFP Data Requirements and Specifications

Mobility Data Specification: Agency

This specification contains a collection of RESTful APIs used to specify the digital relationship
between mobility as a service Providers and the Agencies that regulate them.

e Authors: LADOT
e Date: 25 Feb 2019
e Version: BETA

Authorization

When making requests, the Agency API expects provider_id to be part of the claims in a JWT
access_token in the Authorization header, in the form Authorization: Bearer <access_token>. The token
issuance, expiration and revocation policies are at the discretion of the Agency.

Timestamps

As with the Provider API, timestamp refers to integer milliseconds since Unix epoch.

Vehicles

The /vehicles endpoint returns the specified vehicle (if a device_id is provided) or a list of known
vehicles. Providers can only retrieve data for vehicles in their registered fleet.

Endpoint: /vehicles/{device_id} Method: GET

Path Params:

Param Type Required/Optional Description
device_id UUID Required* If provided, retrieve the specified vehicle

200 Success Response:

If device_id is specified, GET will return a single vehicle record, otherwise it will be a list of vehicle
records with pagination details per the JSON API spec:

{
"vehicles": [...]
"links": {
"first": "https://...",
"last": "https://...",
"prev": "https://...",
"next": "https://..."

SUMD RFP Data Requirements and Specifications

}
}

A vehicle record is as follows:

Field Type Field Description
device_id UUID Provided by Operator to uniquely identify a vehicle
provider_id UUID Issued by City and tracked
vehicle_id String Vehicle Identification Number (vehicle_id) visible on vehicle
type Enum Vehicle Type
propulsion Enum(] Array of Propulsion Type; allows multiple values
year Integer Year Manufactured
mfgr String Vehicle Manufacturer
model String Vehicle Model
status Enum Current vehicle status. See Vehicle Status
prev_event Enum Last Vehicle Event

updated Timestamp Date of last event update

404 Failure Response:

No content returned on vehicle not found.

Vehicle - Register
The /vehicles registration endpoint is used to register a vehicle for use in the Agency jurisdiction.
Endpoint: /vehicles Method: POST

Body Params:

Field Type Required/Optional Field Description
device_id UUID Required Provided by Operator to uniquely identify a vehicle

vehicle_id String Required Vehicle Identification Number (vehicle_id) visible on

vehicle
type Enum Required Vehicle Type
propulsion Enum[] Required Array of Propulsion Type; allows multiple values
year Integer Required* Year Manufactured
mfgr String Required*® Vehicle Manufacturer

model String Required* Vehicle Model

SUMD RFP Data Requirements and Specifications
201 Success Response:

No content returned on success.

400 Failure Response:

error error_description error_details[]
bad_param A validation error occurred. Array of parameters with errors
missing_param A required parameter is missing. Array of missing parameters

409 Failure Response:

error error_description error_details[]

already_registered A vehicle with device_id is already registered

Vehicle - Update

The /vehicles update endpoint is used to update some mutable aspect of a vehicle. For now, only
vehicle_id.

Endpoint: /vehicles/{device_id} Method: PUT

Body Params:

Field Type Required/Optional Field Description
vehicle_id String Required Vehicle Identification Number (vehicle_id) visible on vehicle

201 Success Response:
No content returned on success.

400 Failure Response:

error error_description error_details[]
bad_param A validation error occurred. Array of parameters with errors
missing_param A required parameter is missing. Array of missing parameters

404 Failure Response:

No content returned if no vehicle matching device_id is found.

SUMD RFP Data Requirements and Specifications

Vehicle - Event

The vehicle /event endpoint allows the Provider to control the state of the vehicle including
deregister a vehicle from the fleet.

Endpoint: /vehicles/{device_id}/event Method: POST

Path Params:

Field Type Required/Optional Field Description
device_id UUID Required ID used in Register

Body Params:

Field Type Required/Optional Field Description
event_type Enum Required see Vehicle Events
event_type_reason Enum is:ilr;rbﬁg i see Vehicle Events
timestamp Timestamp Required Date of last event update
telemetry Telemetry Required Single point of telemetry

UUID provided by Operator to uniquely
trip_id uulID Required* identify the trip. Required for trip_start, trip_end,
trip_enter, and trip_leave event types

201 Success Response:

Field Type Field Description
device_id UUID UUID provided by Operator to uniquely identify a vehicle
status Enum Vehicle status based on posted event_type. See Vehicle Status

400 Failure Response:

error error_description error_details[]
bad_param A validation error occurred Array of parameters with errors
missing_param A required parameter is missing Array of missing parameters
unregistered Vehicle is not registered

SUMD RFP Data Requirements and Specifications

Vehicles - Telemetry

The vehicle /telemetry endpoint allows a Provider to send vehicle telemetry data in a batch for
any number of vehicles in the fleet.

The Update Telemetry endpoint (/telemetry) shall be called for the specific trip within 24 hrs
after the vehicle trip is over.

For any given trip, data reported via the (/telemetry) endpoint shall contain temporal and
location data for every 300 ft (91 meters) while vehicle is in motion and 30 seconds while at
rest. For Mobility Service Providers who do not calculate distance in real-time, a periodic rate of
14 seconds can be used while vehicle is in motion.

Endpoint: /vehicles/telemetry Method: POST

Body Params:

Field Type Required/Optional Field Description
data Telemetry[] Required Array of telemetry for one or more vehicles.

201 Success Response:

Field Type Field Description

Responds with number of successfully written telemetry data points and

result Strin . .
8 total number of provided points.

failures Telemetry[] Array of failed telemetry for zero or more vehicles (empty if all successful).
400 Failure Response:

error error_description error_details[]
bad_param A validation error occurred. Array of parameters with errors
invalid_data None of the provided data was valid.
missing_param A required parameter is missing. Array of missing parameters

Service Areas
The /service_areas endpoint gets the list of service areas available to the Provider or a single area.
Endpoint: /service_areas/{service_area_id} Method: GET

Path Params:

SUMD RFP Data Requirements and Specifications

Field Type Required/Optional Field Description

If provided, retrieve a specific service area (e.g. a retired
service_area_id UUID Optional or old service area). If omitted, will return all active
service areas.

Query Params:
Parameter Type Required/Optional Description
The bounding box upper, left, lower and right coordinates

bbox String Optional in WGS84 degrees. All geometries overlapping this
rectangle will be returned. The format is: lat,long;lat,long

200 Success Response:

Field Types Required/Optional Field Description
service_area_id UUID Required UUID issued by city
. . Date at which this service area became
start_date Timestamp Required .
effective
. . If exists, Date at which this service area was
end_date Timestamp Optional
replaced.
area MultiPolygon Required GeoJson MultiPolygon in WGS84 degrees.
prev_area uuiD Optional If exists, the UUID of the prior service area.
replacement_area UUID Optional If exists, the. UUID of the service area that
replaced this one
type Enum Required See area types

Vehicle Events

List of valid vehicle events and the resulting vehicle status if the event is sucessful. Note that to
handle out-of-order events, the validity of the initial-status is not enforced. Events received
out-of-order may result in transient incorrect vehicle states.

valid
.. L. status on ..
event_type event_type_reason description initial SuCCess status_description
status

A vehicle is in the
active fleet but not
yet available for
customer use

Default state for
register a newly inactive removed
registered vehicle

service_start Vehicle unavailable available Vehicle is on the

SUMD RFP Data Requirements and Specifications

vali
. . ?_d status on L.
event_type event_type_reason description initial status_description
success
status
introduced into street and available
service at the for customer use.
beginning of the
day (if program
does not operate
24/7)
low_battery, A vehicle is no
service_end maintenance, longer available available unavailable
compliance, due to
off_hours event_type_reason
Vehicle moved
provider_drop_off) removed, available
for rebalancing elsewhere
Vehicle removed
bl from street and bl
repalance . avallable
, , ! will be placed at ’
provider_pick_up maintenance, charge, . unavailable, removed
. another location
compliance elsewhere
to rebalance
service
o Vehicle removed available,
city_pick_up .) removed
by city unavailable
Customer . Vehicle is reserved
reserve . available reserved .
reserves vehicle orin use.
) Customer cancels)
cancel_reservation] reserved available
reservation
. Customer starts a available, .
trip_start . trip
trip reserved
Customer enters
the municipal
. removed, .
trip_enter area managed by trip
; elsewhere
agency during an
active trip.
Customer leaves
the municipal
trip_leave area managed by trip elsewhere
agency during an
active trip.
Customer ends
trip_end trip and trip available

reservation

SUMD RFP Data Requirements and Specifications

vali
R] ?_d status on .
event_type event_type_reason description initial status_description
success
status
issi A vehicle is avallal?le, A vehicle is

deregister mlssmg,‘ ‘ . unavailable, inactive deactivated from

decommissioned deregistered removed,
the fleet.

elsewhere

The diagram below shows the expected events and related status transitions for a vehicle:

** special case happens only if a non-registered vehicle enters city
T K T
J then goes into a trip.

SUMD RFP Data Requirements and Specifications

Telemetry Data

A standard point of vehicle telemetry. References to latitude and longitude imply coordinates
encoded in the WGS 84 (EPSG:4326) standard GPS or GNSS projection expressed as Decimal

Degrees.

Field Type Required/Optional Field Description
device_id UUID Required ID used in Register

. . . Date/time that event occurred. Based on GPS or
timestamp Timestamp Required

GNSS clock
gps Object Required Telemetry position data
gps.lat Double Required Latitude of the location
gps.Ing Double Required Longitude of the location

gps.altitude Double Required if Available Altitude above mean sea level in meters

. . . Degrees - clockwise starting at O degrees at true
gps.heading Double Required if Available g € 8

North
gps.speed Float Required if Available Speed in meters / sec
gps.hdop Float Required if Available Horizontal GPS or GNSS accuracy value (see hdop)
gps.satellites Integer Required if Available Number of GPS or GNSS satellites
charge Float /Ii(;gll,:icr:tt):lléf Ez;\c:en:nbgt:i(rjylcha rge of vehicle, expressed

Enum Definitions
Area Types

type Description

Areas where vehicles may be picked up/dropped off. A provider's unrestricted
area shall be contained completely inside the agency's unrestricted area for
the provider in question, but it need not cover the entire agency unrestricted
area. See the provider version of the service areas endpoint

unrestricted

restricted Areas where vehicle pick-up/drop-off is not allowed
preferred_pick_up Areas where users are encouraged to pick up vehicles
preferred_drop_off Areas where users are encouraged to drop off vehicles

SUMD RFP Data Requirements and Specifications
Vehicle Type

type
bicycle
scooter

Propulsion Type

propulsion Description
human Pedal or foot propulsion
electric_assist Provides power only alongside human propulsion
electric Contains throttle mode with a battery-powered motor
combustion Contains throttle mode with a gas engine-powered motor

A vehicle may have one or more values from the propulsion, depending on the number of modes
of operation. For example, a scooter that can be powered by foot or by electric motor would
have the propulsion represented by the array ['human’, 'electric']. A bicycle with pedal-assist would
have the propulsion represented by the array ['human', 'electric_assist'] if it can also be operated as a
traditional bicycle.

Responses

e 200: OK: operation successful.

e 201: Created: POST operations, new object created

e 400: Bad request.

e 401: Unauthorized: Invalid, expired, or insufficient scope of token.

e 404: Not Found: Object does not exist, returned on GET or POST operations if the object
does not exist.

e 409: Conflict: POST operations when an object already exists and an update is not
possible.

e 500: Internal server error: In this case, the answer may contain a text/plain body with an
error message for troubleshooting.

Error Message Format

Field Type Field Description
error String Error message string
error_description String Human readable error description (can be localized)
error_details String[] Array of error details

SUMD RFP Data Requirements and Specifications

