Permeable Pavement

Description: Permeable pavements allow stormwater runoff to filter through voids in the pavement surface into an underlying stone reservoir, where it is temporarily stored and/or infiltrated. Porous paving systems have several design variants. The four major categories are: 1) pervious concrete; 2) modular block systems; 3) porous asphalt and 4) grass and gravel pavers. All have a similar structure, consisting of a surface pavement layer, an underlying stone aggregate reservoir layer and a filter layer or fabric installed on the bottom.

Variations: permeable interlocking pavers, concrete grid pavers, plastic reinforced grid pavers

Advantages/Benefits:
- Runoff volume reduction
- Can increase aesthetic value
- Provides water quality treatment

Disadvantages/Limitations:
- Cost
- Maintenance
- Limited to low traffic areas with limited structural loading
- Potential issues with handicap access
- Infiltration can be limited by underlying soil property
- Not effective on steep slopes

Applications:
- Best used in low traffic and low load bearing areas
- Parking lots (particularly overflow areas)
- Driveways (commercial)
- Sidewalks (outside the Right of Way)
- Emergency access roads, maintenance roads and trails, etc

Selection Criteria:

LEVEL 1 – 45% Runoff Reduction Credit

LEVEL 2 – 75% Runoff Reduction Credit

Land Use Considerations:
- Residential
- Commercial
- Industrial

Maintenance:
- Turf pavers can require mowing, fertilization, and irrigation. Plowing is possible, but requires use of skids
- Sand and salt should not be applied
- Adjacent areas should be fully stabilized with vegetation to prevent sediment-laden runoff from clogging the surface
- A vacuum-type sweeper or high-pressure hosing (for porous concrete) should be used for cleaning

Maintenance Burden
- L = Low
- M = Moderate
- H = High
SECTION 1: DESCRIPTION

Permeable pavements are alternative paving surfaces that allow stormwater runoff to filter through voids in the pavement surface into an underlying stone reservoir, where it is temporarily stored and/or infiltrated. Permeable pavements consist of a surface pavement layer, an underlying stone aggregate reservoir layer and a filter layer or fabric installed on the bottom (See Figure 3.1 below).

The thickness of the reservoir layer is determined by both a structural and hydrologic design analysis. The reservoir layer serves to retain stormwater and also supports the design traffic loads for the pavement. In low-infiltration soils, some or all of the filtered runoff is collected in an underdrain and returned to the storm drain system. If infiltration rates in the native soils permit, permeable pavement can be designed without an underdrain, to enable full infiltration of runoff. A combination of these methods can be used to infiltrate a portion of the filtered runoff.

![Figure 3.1. Cross Section of Typical Permeable Pavement (Source: Hunt & Collins, 2008)](image)

Permeable pavement is typically designed to treat stormwater that falls on the actual pavement surface area, but it may also be used to accept run-on from small adjacent impervious areas, such as impermeable driving lanes or rooftops. However, careful sediment control is needed for any run-on areas to avoid clogging of the down-gradient permeable pavement. Permeable pavement has been used at commercial, institutional, and residential sites in spaces that are traditionally impervious. Permeable pavement promotes a high degree of runoff volume reduction and nutrient removal, and it can also reduce the effective impervious cover of a development site.
SECTION 2: PERFORMANCE

The overall runoff reduction of permeable pavement is shown in Table 3.1.

<table>
<thead>
<tr>
<th>Stormwater Function</th>
<th>Level 1 Design</th>
<th>Level 2 Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Runoff Volume Reduction (RR)</td>
<td>45%</td>
<td>75%</td>
</tr>
</tbody>
</table>

Sources: CSN (2008) and CWP (2007)

SECTION 3: DESIGN TABLE

The major design goal of Permeable Pavement is to maximize runoff reduction. To this end, designers may choose to use a baseline permeable pavement design (Level 1) or an enhanced design (Level 2) that maximizes runoff reduction. To qualify for Level 2, the design must meet all design criteria shown in the right hand column of Table 3.2.

1. A = Area in acres

<table>
<thead>
<tr>
<th>Level 1 Design</th>
<th>Level 2 Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_v = (1)(R_v)(A) ≥ 3630</td>
<td>T_v = (1.1)(R_v)(A) 3630</td>
</tr>
<tr>
<td>Soil infiltration ≤ 0.5 in./hr.</td>
<td>Soil infiltration rate > 0.5 in./hr.</td>
</tr>
<tr>
<td>Maximum contributing drainage area is twice the permeable surface area.</td>
<td>The permeable material handles only rainfall on its surface.</td>
</tr>
<tr>
<td>Underdrain required</td>
<td>Underdrain not required; OR</td>
</tr>
<tr>
<td>If an underdrain is used, a 12-inch stone sump must be provided below the underdrain invert</td>
<td></td>
</tr>
</tbody>
</table>

SECTION 4: TYPICAL DETAILS

![Figure 3.2. Typical Detail of Concrete Paver (Source: Smith, 2009)](image-url)
SECTION 5: PHYSICAL FEASIBILITY & DESIGN APPLICATIONS

Since permeable pavement has a very high runoff reduction capability, it should always be considered as an alternative to conventional pavement. Permeable pavement is subject to the same feasibility constraints as most infiltration practices, as described below.

Available Space. A prime advantage of permeable pavement is that it does not normally require additional space at a new development or redevelopment site, which can be important for tight sites or areas where land prices are high.

Soils. Soil conditions do not constrain the use of permeable pavement, although they do determine whether an underdrain is needed. Impermeable soils in Hydrologic Soil Groups (HSG) C or D usually require an underdrain, whereas HSG A and B soils often do not. In addition, permeable pavement should never be situated above fill soils unless designed with an impermeable liner and underdrain.

If the proposed permeable pavement area is designed to infiltrate runoff without underdrains, it must have a minimum infiltration rate of 0.5 inches per hour. Initially, projected soil infiltration rates can be estimated from USDA-NRCS soil data, but they must be confirmed by an on-site infiltration measurement. Native soils should have silt/clay content less than 40% and clay content less than 20%.

Designers should also evaluate existing soil properties during initial site layout, and seek to configure the site to conserve and protect the soils with the greatest recharge and infiltration rates. In particular, areas of HSG A or B soils shown on NRCS soil surveys should be considered as primary locations for all types of infiltration.
External Drainage Area. Any external drainage area contributing runoff to permeable pavement should not exceed twice the surface area of the permeable pavement (for Level 1 design), and it should be as close to 100% impervious as possible. Some field experience has shown that an upgradient drainage area (even if it is impervious) can contribute particulates to the permeable pavement and lead to clogging (Hirschman, et al., 2009). Therefore, careful sediment source control and/or a pre-treatment strip or sump (e.g., stone or gravel) should be used to control sediment run-on to the permeable pavement section.

Pavement Slope. Steep slopes can reduce the stormwater storage capability of permeable pavement and may cause shifting of the pavement surface and base materials. Designers should consider using a terraced design for permeable pavement in sloped areas, especially when the local slope is several percent or greater.

The bottom slope of a permeable pavement installation should be as flat as possible (i.e., 0% longitudinal slope) to enable even distribution and infiltration of stormwater. However, a maximum longitudinal slope of 1% is permissible if an underdrain is employed. Lateral slopes should be 0%.

Minimum Hydraulic Head. The elevation difference needed for permeable pavement to function properly is generally nominal, although 2 to 4 feet of head may be needed to drive flows through underdrains. Flat terrain may affect proper drainage of Level 1 permeable pavement designs, so underdrains should have a minimum 0.5% slope.

Minimum Depth to Water Table. A high groundwater table may cause runoff to pond at the bottom of the permeable pavement system. Therefore, a minimum vertical distance of 2 feet must be provided between the bottom of the permeable pavement installation (i.e., the bottom invert of the reservoir layer) and the seasonal high water table.

Setbacks. Permeable pavement should not be hydraulically connected to structure foundations, in order to avoid harmful seepage. Setbacks to structures and roads vary, based on the scale of the permeable pavement installation (see Table 3.3 below). At a minimum, small- and large-scale pavement applications should be located a minimum horizontal distance of 100 feet from any water supply well, 50 feet from septic systems, and at least 5 feet down-gradient from dry or wet utility lines.

Informed Owner. The property owner should clearly understand the unique maintenance responsibilities inherent with permeable pavement, particularly for parking lot applications. The owner should be capable of performing routine and long-term actions (e.g., vacuum sweeping) to maintain the pavement’s hydrologic functions, and avoid future practices (e.g., winter sanding, seal coating or repaving) that diminish or eliminate them.

High Loading Situations. Permeable pavement is not intended to treat sites with high sediment or trash/debris loads, since such loads will cause the practice to clog and fail.

Groundwater Protection. Section 10 of the Bioretention specification (GIP-01) presents a list of potential stormwater hotspots that pose a risk of groundwater contamination. Infiltration of runoff from designated hotspots is highly restricted or prohibited.

Limitations. Permeable pavement can be used as an alternative to most types of conventional pavement at residential, commercial and institutional developments; however, it is not currently approved for use in the Right of Way (ROW).

Design Scales. Permeable pavement can be installed at the following three scales:

1. The smallest scale is termed Micro-Scale Pavements, which applies to converting impervious surfaces to permeable ones on small lots and redevelopment projects, where the installations may range from 250 to 1000 square feet in total area. Where redevelopment or retrofitting of existing impervious areas results in a larger footprint of permeable pavers (small-scale or large-scale, as described below), the designer should implement
the Load Bearing, Observation Well, Underdrain, Soil Test, and Building Setback criteria associated with the applicable scale.

2. **Small-scale pavement** applications treat portions of a site between 1,000 and 10,000 square feet in area, and include areas that only occasionally receive heavy vehicular traffic.

3. **Large scale pavement** applications exceed 10,000 square feet in area and typically are installed within portions of a parking lot.

Table 3.3 outlines the different design requirements for each of the three scales of permeable pavement installation.

<table>
<thead>
<tr>
<th>Design Factor</th>
<th>Micro-Scale Pavement</th>
<th>Small-Scale Pavement</th>
<th>Large-Scale Pavement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impervious Area Treated</td>
<td>250 to 1,000 sq. ft.</td>
<td>1,000 to 10,000 sq. ft.</td>
<td>More than 10,000 sq. ft.</td>
</tr>
<tr>
<td>Typical Applications</td>
<td>Driveways Walkways Courtyard Plazas Individual Sidewalks</td>
<td>Sidewalk Network Fire Lanes Road Shoulders (private) Spill-Over Parking Plazas</td>
<td>Parking Lots with more than 40 spaces</td>
</tr>
<tr>
<td>Load Bearing Capacity</td>
<td>Foot traffic Light vehicles</td>
<td>Light vehicles</td>
<td>Heavy vehicles (moving & parked)</td>
</tr>
<tr>
<td>Reservoir Size</td>
<td>Infiltrate or detain some or all of the T_v</td>
<td>Infiltrate or detain the full T_v</td>
<td></td>
</tr>
<tr>
<td>External Drainage Area?</td>
<td>No</td>
<td>Impervious cover up to twice with Level 1 design.</td>
<td>Impervious cover up to twice with Level 1 design.</td>
</tr>
<tr>
<td>Observation Well Underdrain?</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Required Soil Tests</td>
<td>Rare</td>
<td>Depends on the soils</td>
<td>Back-up underdrain</td>
</tr>
<tr>
<td>Suggested Building Setbacks</td>
<td>Two per practice</td>
<td>Four per practice</td>
<td>Four + one per every additional 5000 ft2</td>
</tr>
<tr>
<td></td>
<td>5 feet down-gradient</td>
<td>10 feet down-gradient</td>
<td>25 feet down-gradient</td>
</tr>
<tr>
<td></td>
<td>25 feet up-gradient</td>
<td>50 feet up-gradient</td>
<td>100 feet up-gradient</td>
</tr>
</tbody>
</table>

Regardless of the design scale of the permeable pavement installation, the designer should carefully consider the expected traffic load at the proposed site and the consequent structural requirements of the pavement system. Sites with heavy traffic loads will require a thick aggregate base. Sites with heavy traffic loads will require a thick aggregate base and, in the case of porous asphalt and pervious concrete, may require the addition of an admixture for strength or a specific bedding design. In contrast, most micro-scale applications should have little or no traffic flow to contend with.

SECTION 6: DESIGN CRITERIA

6.1 Sizing of Permeable Pavement

Structural Design. If permeable pavement will be used in a parking lot or other setting that involves vehicles, the pavement surface must be able to support the maximum anticipated traffic load. The structural design process will vary according to the type of pavement selected, and the manufacturer’s specific recommendations should be consulted. The thickness of the permeable pavement and reservoir layer must be sized to support structural loads and to temporarily store the design storm volume (e.g., the water quality, channel protection, and/or flood control volumes). On most new development and redevelopment sites, the structural support requirements will dictate the depth of the underlying stone reservoir.
The structural design of permeable pavements involves consideration of four main site elements:

- Total traffic;
- In-situ soil strength;
- Environmental elements; and
- Bedding and Reservoir layer design.

The resulting structural requirements may include, but are not limited to, the thickness of the pavement, filter, and reservoir layer. Designers should note that if the underlying soils have a low California Bearing Ratio (CBR) (less than 4%), they may need to be compacted to at least 95% of the Standard Proctor Density, which generally rules out their use for infiltration.

Designers should determine structural design requirements by consulting transportation design guidance sources, such as the following:

- TDOT Roadway Design Guidelines (2010; or latest edition);
- AASHTO Guide for Design of Pavement Structures (1993); and,

Hydraulic Design

Permeable pavement is typically sized to store the complete water quality Treatment Volume (Tv) or another design storm volume in the reservoir layer. Modeling has shown that this simplified sizing rule approximates an 80% average rainfall volume removal for subsurface soil infiltration rates up to one inch per hour. More conservative values are given because both local and national experience has shown that clogging of the permeable material can be an issue, especially with larger contributing areas carrying significant soil materials onto the permeable surface.

The infiltration rate typically will be less than the flow rate through the pavement, so that some underground reservoir storage will usually be required. Designers should initially assume that there is no outflow through underdrains, using Equation 3.1 to determine the depth of the reservoir layer, assuming runoff fully infiltrates into the underlying soil:

Equation 3.1. Depth of Reservoir Layer with no Underdrain

\[
'd' = \frac{[(d_c \times R) + P - (i/2 \times t_f)]}{n}
\]

Where:
- \(d_p\) = The depth of the reservoir layer (ft.)
- \(d_c\) = The depth of runoff from the contributing drainage area (not including the permeable paving surface) for the Treatment Volume (Tv/\(A_c\)), or other design storm (ft.)
- \(R\) = \(A_c/A_p\) = The ratio of the contributing drainage area (\(A_c\), not including the permeable paving surface) to the permeable pavement surface area (\(A_p\)) [NOTE: With reference to Table 3.3, the maximum value for the Level 1 design is \(R = 2\), (the external drainage area \(A_c\) is twice that of the permeable pavement area \(A_p\)); and for Level 2 design \(R = 0\) (the drainage area is made up solely of permeable pavement \(A_p\)).
- \(P\) = The rainfall depth for the Treatment Volume (Level 1 = 1 inch; Level 2 = 1.1 inch), or other design storm (ft.)
- \(i\) = The field-verified infiltration rate for native soils (ft./day)
- \(t_f\) = The time to fill the reservoir layer (day) – typically 2 hours or 0.083 day
- \(n\) = The porosity for the reservoir layer (0.4)
The maximum allowable depth of the reservoir layer is constrained by the maximum allowable drain time, which is calculated using **Equation 3.2**.

Equation 3.2. Maximum Depth of Reservoir Layer

\[d_{p-max} = \frac{(i/2 \times t_d)}{n} \]

Where:
- \(d_{p-max} \) = The maximum depth of the reservoir layer (ft.)
- \(i \) = The field-verified infiltration rate for native soils (ft./day)
- \(t_d \) = The maximum allowable time to drain the reservoir layer, typically 1 to 2 days
- \(n \) = The porosity for the reservoir layer (0.4)

The following design assumptions apply to **Equations 3.1 and 3.2**:
- The contributing drainage area \((A_c) \) should not contain pervious areas.
- For design purposes, the native soil infiltration rate \((\bar{i}) \) should be the field-tested soil infiltration rate divided by a factor of safety of 2. The minimum acceptable native soil infiltration rate is 0.5 inches/hr.
- The porosity \((n) \) for No. 57 stone = 0.40
- Max. drain time for the reservoir layer should be not less than 24 or more than 48 hours.

If the depth of the reservoir layer is too great (i.e. \(d_p \) exceeds \(d_{p-max} \)), or the verified soil infiltration rate is less than 0.5 inches per hour, then the design method typically changes to account for underdrains. The storage volume in the pavements must account for the underlying infiltration rate and outflow through the underdrain. In this case, the design storm should be routed through the pavement to accurately determine the required reservoir depth. Alternatively, the designer may use **Equations 3.3 through 3.5** to approximate the depth of the reservoir layer for designs using underdrains.

Equation 3.3 can be used to approximate the outflow rate from the underdrain. The hydraulic conductivity, \(k \), of gravel media is very high (~17,000 ft./day). However, the permeable pavement reservoir layer will drain increasingly slower as the storage volume decreases (i.e. the hydraulic head decreases). To account for this change, a conservative permeability coefficient of 100 ft./day can be used to approximate the average underdrain outflow rate.

Equation 3.3. Outflow through Underdrain

\[q_u = k \times m \]

Where:
- \(q_u \) = Outflow through the underdrain (per outlet pipe, assumed 6-inch diameter)(ft./day)
- \(k \) = Hydraulic conductivity for the reservoir layer (ft./day – assume 100 ft./day)
- \(m \) = Underdrain pipe slope (ft./ft.)

Once the outflow rate through the underdrain has been approximated, **Equation 3.4** is used to determine the depth of the reservoir layer needed to store the design storm.
Equation 3.4. Depth of Reservoir Layer with Outflow through Underdrain

\[d_p = \frac{(d_c \times R) + P - (i/2 \times t_f) - (q_u \times t_f)}{n}\]

Where:
- \(d_p\) = Depth of the reservoir layer (ft.)
- \(d_c\) = Depth of runoff from the contributing drainage area (not including the permeable pavement surface) for the Treatment Volume \((Tv/A_c)\), or other design storm (ft.)
- \(R\) = \(A_c/A_p\) = The ratio of the contributing drainage area \((A_c)\) (not including the permeable pavement surface) to the permeable pavement surface area \((A_p)\)
- \(P\) = The rainfall depth for the Treatment Volume \((Level 1 = 1\text{ inch}; Level 2 = 1.1\text{ inch}); or other design storm (ft.)
- \(i\) = The field-verified infiltration rate for the native soils (ft./day)
- \(t_f\) = The time to fill the reservoir layer (day) – typically 2 hours or 0.083 day
- \(n\) = The porosity for the reservoir layer (0.4)
- \(q_u\) = Outflow through Underdrain (ft./day)

The maximum allowable depth of the reservoir layer is constrained by the maximum allowable drain time, which is calculated using **Equation 3.5**.

Equation 3.5. Maximum Depth of Reservoir Layer with Outflow through Underdrain

\[d_{p-max} = \frac{((i/2 \times t_d) - (q_u \times t_d))}{n}\]

Where:
- \(d_{p-max}\) = The maximum depth of the reservoir layer (ft.)
- \(i\) = The field-verified infiltration rate for the native soils (ft./day)
- \(n\) = The porosity for the reservoir layer (0.4)
- \(t_d\) = The time to drain the reservoir layer (day – typically 1 to 2 days)
- \(q_u\) = Outflow through Underdrain (ft./day)

If the depth of the reservoir layer is still too great (i.e. \(d_p\) exceeds \(d_{p-max}\)), the number of underdrains can be increased, which will increase the underdrain outflow rate.

Permeable pavement can also be designed to address, in whole or in part, the detention storage needed to comply with channel protection and/or flood control requirements. The designer can model various approaches by factoring in storage within the stone aggregate layer, expected infiltration, and any outlet structures used as part of the design. Routing calculations can also be used to provide a more accurate solution of the peak discharge and required storage volume.

Once runoff passes through the surface of the permeable pavement system, designers should calculate outflow pathways to handle subsurface flows. Subsurface flows can be regulated using underdrains, the volume of storage in the reservoir layer, and the bed slope of the reservoir layer.
6.2 Soil Infiltration Rate Testing

To design a permeable pavement system without an underdrain, the measured infiltration rate of subsoils must be 0.5 inches per hour or greater. On-site soil infiltration rate testing procedures are outlined in Appendix 3-A. A minimum of two tests must be taken for micro-scale pavements, four tests for small-scale, and four tests plus one for every additional 5,000 sq. ft of large-scale pavement. The same frequency of soil borings must be taken to confirm the underlying soil properties at the depth where infiltration is designed to occur (i.e., to ensure that the depth to water table, depth to bedrock, or karst is defined). Soil infiltration testing should be conducted within any confining layers that are found within 4 feet of the bottom of a proposed permeable pavement system.

6.3 Type of Surface Pavement

Pervious concrete, porous asphalt, permeable interlocking concrete pavers, concrete grid pavers, and plastic reinforced grid paver surfaces are permitted.

6.4 Internal Geometry and Drawdowns

- **Elevated Underdrain.** To promote greater runoff reduction for permeable pavement located on marginal soils, an elevated underdrain should be installed with a stone jacket that creates a 12 to 18 inch deep storage layer below the underdrain invert. The void storage in this layer can help qualify a site to achieve Level 2 design.

- **Rapid Drawdown.** When possible, permeable pavement should be designed so that the target runoff reduction volume stays in the reservoir layer for at least 36 hours before being discharged through an underdrain.

- **Conservative Infiltration Rates.** Designers should always decrease the measured infiltration rate by a factor of 2 during design, to approximate long term infiltration rates.

6.5 Pretreatment

Pretreatment for most permeable pavement applications is not necessary, since the surface acts as pretreatment to the reservoir layer below.

6.6 Conveyance and Overflow

Permeable pavement designs should include methods to convey larger storms (e.g., 2-yr, 10-yr) to the storm drain system. The following is a list of methods that can be used to accomplish this:

- Place a perforated pipe horizontally near the top of the reservoir layer to pass excess flows after water has filled the base. The placement and/or design should be such that the incoming runoff is not captured (e.g., placing the perforations on the underside only).

- Increase the thickness of the top of the reservoir layer by as much as 6 inches (i.e., create freeboard). The design computations used to size the reservoir layer often assume that no freeboard is present.

- Create underground detention within the reservoir layer of the permeable pavement system. Reservoir storage may be augmented by corrugated metal pipes, plastic or concrete arch structures, etc.

- Route excess flows to another detention or conveyance system that is designed for the management of extreme event flows.

- Set the storm drain inlets flush with the elevation of the permeable pavement surface to effectively convey excess stormwater runoff past the system (typically in remote areas). The design should also make allowances for relief of unacceptable ponding depths during larger rainfall events.
6.7 Reservoir layer

The thickness of the reservoir layer is determined by runoff storage needs, the infiltration rate of in situ soils, structural requirements of the pavement sub-base, depth to water table and bedrock, and frost depth conditions. A professional should be consulted regarding the suitability of the soil subgrade.

- The reservoir below the permeable pavement surface should be composed of clean, washed stone aggregate and sized for both the storm event to be treated and the structural requirements of the expected traffic loading.
- The storage layer may consist of clean washed No. 57 stone, although No. 2 stone is preferred because it provides additional storage and structural stability.
- The bottom of the reservoir layer should be completely flat so that runoff will be able to infiltrate evenly through the entire surface.

6.8 Underdrains

The use of underdrains is recommended when there is a reasonable potential for infiltration rates to decrease over time, when underlying soils have an infiltration rate of 0.5 inches per hour or less, when shallow bedrock is present, or when soils must be compacted to achieve a desired Proctor density. Underdrains can also be used to manage extreme storm events to keep detained stormwater from backing up into the permeable pavement.

- An underdrain(s) should be placed within the reservoir and encased in 8 to 12 inches of clean, washed stone.
- The underdrain outlet can be fitted with a flow-reduction orifice as a means of regulating the stormwater detention time. The minimum diameter of any orifice should be 0.5 inch.
- An underdrain(s) can also be installed and capped at a downstream structure as an option for future use if maintenance observations indicate a reduction in the soil permeability.

6.9 Maintenance Reduction Features

Maintenance is a crucial element to ensure the long-term performance of permeable pavement. The most frequently cited maintenance problem is surface clogging caused by organic matter and sediment, which can be reduced by the following measures:

- **Periodic Vacuum Sweeping.** The pavement surface is the first line of defense in trapping and eliminating sediment that may otherwise enter the stone base and soil subgrade. The rate of sediment deposition should be monitored and vacuum sweeping done once or twice a year. This frequency should be adjusted according to the intensity of use and deposition rate on the permeable pavement surface. At least one sweeping pass should occur at the end of winter.

- **Protecting the Bottom of the Reservoir Layer.** There are two options to protect the bottom of the reservoir layer from intrusion by underlying soils. The first method involves covering the bottom with nonwoven, polypropylene geotextile that is permeable, although some practitioners recommend avoiding the use of filter fabric since it may become a future plane of clogging within the system. Permeable filter fabric is still recommended to protect the excavated sides of the reservoir layer, in order to prevent soil piping. The second method is to form a barrier of choker stone and sand. In this case, underlying native soils should be separated from the reservoir base/subgrade layer by a thin 2 to 4 inch layer of clean, washed, choker stone (ASTM D 448 No. 8 stone) covered by a layer of 6 to 8 inches of course sand.

- **Observation Well.** An observation well, consisting of a well-anchored, perforated 4 to 6 inch (diameter) PVC pipe that extends vertically to the bottom of the reservoir layer, should be installed at the downstream end of...
all large-scale permeable pavement systems. The observation well should be fitted with a lockable cap installed flush with the ground surface (or under the pavers) to facilitate periodic inspection and maintenance. The observation well is used to observe the rate of drawdown within the reservoir layer following a storm event.

- **Overhead Landscaping.** Check the area of parking lots required to be in landscaping. Large-scale permeable pavement applications should be carefully planned to integrate this landscaping in a manner that maximizes runoff treatment and minimizes the risk that sediment, mulch, grass clippings, leaves, nuts, and fruits will inadvertently clog the paving surface.

SECTION 7: Material Specifications

Permeable pavement material specifications vary according to the specific pavement product selected. Table 3.4 describes general material specifications for the component structures installed beneath the permeable pavement. Table 3.5 provides specifications for general categories of permeable pavements. Designers should consult manufacturer’s technical specifications for specific criteria and guidance.

<table>
<thead>
<tr>
<th>Table 3.4. Material Specifications for Underneath the Pavement Surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>Bedding Layer</td>
</tr>
<tr>
<td>Reservoir Layer</td>
</tr>
<tr>
<td>Underdrain</td>
</tr>
<tr>
<td>Either Filter Layer or (See Filter Fabric below)</td>
</tr>
<tr>
<td>Filter Fabric (optional)</td>
</tr>
<tr>
<td>Impermeable Liner (if needed)</td>
</tr>
<tr>
<td>Observation Well</td>
</tr>
</tbody>
</table>
SECTION 8: SPECIAL CASE DESIGN ADAPTATIONS

The design adaptation described below permits permeable pavement to be used on a wider range of sites.

<table>
<thead>
<tr>
<th>Material</th>
<th>Specification</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permeable Interlocking Concrete Pavers</td>
<td>Surface open area: 5% to 15%. Thickness: 3.125 inches for vehicles. Compressive strength: 55 Mpa (~8000 psi). Open void fill media: aggregate</td>
<td>Must conform to ASTM C936 specifications. Reservoir layer required to support the structural load.</td>
</tr>
<tr>
<td>Concrete Grid Pavers</td>
<td>Open void content: 20% to 50%. Thickness: 3.5 inches. Compressive strength: 35 Mpa (~5000 psi). Open void fill media: aggregate, topsoil and grass, coarse sand.</td>
<td>Must conform to ASTM C 1319 specifications. Reservoir layer required to support the structural load.</td>
</tr>
<tr>
<td>Plastic Reinforced Grid Pavers</td>
<td>Void content: depends on fill material. Compressive strength: varies, depending on fill material. Open void fill media: aggregate, topsoil and grass, coarse sand.</td>
<td>Reservoir layer required to support the structural load.</td>
</tr>
<tr>
<td>Pervious Concrete</td>
<td>Void content: 15% to 25%. Thickness: typically 4 to 8 inches. Compressive strength: 2.8 to 28 Mpa. Open void fill media: None</td>
<td>May not require a reservoir layer to support the structural load, but a layer may be included to increase the storage or infiltration.</td>
</tr>
<tr>
<td>Porous Asphalt</td>
<td>Void content: 15% to 20%. Thickness: typically 3 to 7 in. (depending on traffic load). Open void fill media: None.</td>
<td>Reservoir layer required to support the structural load.</td>
</tr>
</tbody>
</table>

However, it is important not to force this practice onto marginal sites. Other runoff reduction practices are often preferred alternatives for difficult sites.

8.1 Shallow Bedrock

Underdrains must be used in locations in which bedrock is encountered less than 2 feet beneath the planned invert of the reservoir layer.

SECTION 9: CONSTRUCTION

Experience has shown that proper installation is absolutely critical to the effective operation of a permeable pavement system.

9.1 Necessary Erosion & Sediment Controls

- All permeable pavement areas should be fully protected from sediment intrusion by silt fence or construction fencing, particularly if they are intended to infiltrate runoff.
- Permeable pavement areas should remain outside the limit of disturbance during construction to prevent soil compaction by heavy equipment. Permeable pavement areas should be clearly marked on all construction documents and grading plans. To prevent soil compaction, heavy vehicular and foot traffic should be kept out of permeable pavement areas during and immediately after construction.
• During construction, care should be taken to avoid tracking sediments onto any permeable pavement surface to avoid clogging.
• Any area of the site intended ultimately to be a permeable pavement area should generally not be used as the site of a temporary sediment basin.
• Where locating a sediment basin on an area intended for permeable pavement is unavoidable, the invert of the sediment basin must be a minimum of 2 feet above the final design elevation of the bottom of the aggregate reservoir course.
• All sediment deposits in the excavated area should be carefully removed prior to installing the subbase, base and surface materials

9.2 Permeable Pavement Construction Sequence

The following is a typical construction sequence to properly install permeable pavement:

Step 1. Construction of the permeable pavement shall only begin after the entire contributing drainage area has been stabilized. The proposed site should be checked for existing utilities prior to any excavation. Do not install the system in rain or snow, and do not install frozen bedding materials.

Step 2. As noted above, temporary EPSC measures are needed during installation to divert stormwater away from the permeable pavement area until it is completed. Special protection measures such as erosion control fabrics may be needed to protect vulnerable side slopes from erosion during the excavation process. The proposed permeable pavement area must be kept free from sediment during the entire construction process. Construction materials that are contaminated by sediments must be removed and replaced with clean materials.

Step 3. Where possible, excavators or backhoes should work from the sides to excavate the reservoir layer to its appropriate design depth and dimensions. For micro-scale and small-scale pavement applications, excavating equipment should have arms with adequate extension so they do not have to work inside the footprint of the permeable pavement area (to avoid compaction). Contractors can utilize a cell construction approach, whereby the proposed permeable pavement area is split into 500 to 1000 sq. ft. temporary cells with a 10 to 15 foot earth bridge in between, so that cells can be excavated from the side. Excavated material should be placed away from the open excavation so as to not jeopardize the stability of the side walls.

Step 4. The native soils along the bottom and sides of the permeable pavement system should be scarified or tilled to a depth of 3 to 4 inches prior to the placement of the filter layer or filter fabric. In large scale paving applications with weak soils, the soil subgrade may need to be compacted to 95% of the Standard Proctor Density to achieve the desired load-bearing capacity. (NOTE: This effectively eliminates the infiltration function of the installation, and it must be addressed during hydrologic design.)

Step 5. If filter fabric is to be installed on the bottom and the sides of the reservoir layer, the strips should overlap down-slope by a minimum of 2 feet, and be secured a minimum of 4 feet beyond the edge of the excavation. Where the filter layer extends beyond the edge of the pavement (to convey runoff to the reservoir layer), install an additional layer of filter fabric 1 foot below the surface to prevent sediments from entering into the reservoir layer. Excess filter fabric should not be trimmed until the site is fully stabilized.

Step 6. Provide a minimum of 2 inches of aggregate above and below the underdrains. The underdrains should slope down towards the outlet at a grade of 0.5% or steeper. The up-gradient end of underdrains in the reservoir layer should be capped. Where an underdrain pipe is connected to a structure, there shall be no perforations within 1 foot of the structure. Ensure that there are no perforations in clean-outs and observation wells within 1 foot of the surface.

Step 7. Moisten and spread 6-inch lifts of the appropriate clean, washed stone aggregate (usually No. 2 or No. 57
stone). Place at least 4 inches of additional aggregate above the underdrain, and then compact it using a vibratory roller in static mode until there is no visible movement of the aggregate. Do not crush the aggregate with the roller.

Step 8. Install the bedding layer. The thickness of the bedding layer is to be based on the block manufacturer's recommendation or that of a qualified professional.

Step 9. Paving materials shall be installed in accordance with manufacturer or industry specifications for the particular type of pavement.

9.3 Construction Inspection

Inspections before, during and after construction are needed to ensure that permeable pavement is built in accordance with these specifications. Use detailed inspection checklists that require sign-offs by qualified individuals at critical stages of construction, to ensure that the contractor’s interpretation of the plan is consistent with the designer's intent. A post-construction inspection checklist for permeable pavement is included in Appendix C of Volume 1 of this Manual.

Some common pitfalls can be avoided by careful construction supervision that focuses on the following key aspects of permeable pavement installation:

- Store materials in a protected area to keep them free from mud, dirt, and other foreign materials.
- The contributing drainage area should be stabilized prior to directing water to the permeable pavement area.
- Check the aggregate material to confirm that it is clean and washed, meets specifications and is installed to the correct depth.
- Check elevations (e.g., the invert of the underdrain, inverts for the inflow and outflow points, etc.) and the surface slope.
- Make sure the permeable pavement surface is even, runoff evenly spreads across it, and the storage bed drains within 48 hours.
- Inspect the structural integrity of the pavement surface, looking for signs of slumping, cracking, spalling or broken pavers. Replace or repair affected areas.
- Ensure that caps are placed on the upstream (but not the downstream) ends of the underdrains.
- Inspect the pretreatment structures (if applicable) to make sure they are properly installed and working effectively.
- The drawdown rate should be measured at the observation well for three (3) days following a storm event in excess of 0.5 inch in depth. If standing water is still observed in the well after three days, this is a clear sign that clogging is a problem.
- Once the final construction inspection has been completed, log the GPS coordinates for each facility and submit them to MWS.
SECTION 10: AS-BUILT REQUIREMENTS

After the permeable pavement has been installed, an as-built inspection and certification must be performed by a Professional Engineer. The as-built certification verifies that the BMP was installed as designed and approved. The following components must be addressed in the as-built certification:

1. The infiltration rate of the permeable pavement must be verified.
2. The infiltration rate test of the underlying soils should be included if Level 2 is used without an underdrain.
3. Surrounding drainage areas must be stabilized to prevent sediment from clogging the pavement.

SECTION 11: MAINTENANCE

11.1 Maintenance Document

The requirements for the Maintenance Document are in Appendix C of Volume 1 of the Manual. They include the execution and recording of an Inspection and Maintenance Agreement or a Declaration of Restrictions and Covenants, and the development of a Long Term Maintenance Plan (LTMP) by the design engineer. The LTMP contains a description of the stormwater system components and information on the required inspection and maintenance activities. The LTMP for permeable pavement should also note which conventional parking lot maintenance tasks must be avoided (e.g., sanding, re-sealing, re-surfacing, power-washing). Signs should be posted on larger parking lots to indicate their stormwater function and special maintenance requirements.

11.2 Maintenance Tasks

It is difficult to prescribe the specific types or frequency of maintenance tasks that are needed to maintain the hydrologic function of permeable pavement systems over time. Most installations work reasonably well year after year with little or no maintenance, whereas some have problems right from the start.

One preventative maintenance task for large-scale applications involves vacuum sweeping on a frequency consistent with the use and loadings encountered in the parking lot. Many consider an annual, dry-weather sweeping in the spring months to be important. The contract for sweeping should specify that a vacuum sweeper be used that does not use water spray, since spraying may lead to subsurface clogging. Vacuum settings for large-scale interlocking paver applications should be calibrated so they do not pick up the stones between pavement blocks.

11.3 Maintenance Inspections

It is highly recommended that a spring maintenance inspection and cleanup be conducted at each permeable pavement site, particularly at large-scale applications.

Maintenance of permeable pavement is driven by annual inspections that evaluate the condition and performance of the practice. The following are suggested annual maintenance inspection points for permeable pavements:

- The drawdown rate should be measured at the observation well for three (3) days following a storm event in excess of 0.5 inch in depth. If standing water is still observed in the well after three days, this is a clear sign that clogging is a problem.
- Inspect the surface of the permeable pavement for evidence of sediment deposition, organic debris, staining or ponding that may indicate surface clogging. If any signs of clogging are noted, schedule a vacuum sweeper (no brooms or water spray) to remove deposited material. Then, test sections by pouring water from a five gallon
bucket to ensure they work.

- Inspect the structural integrity of the pavement surface, looking for signs of surface deterioration, such as slumping, cracking, spalling or broken pavers. Replace or repair affected areas, as necessary.
- Check inlets, pretreatment cells and any flow diversion structures for sediment buildup and structural damage. Note if any sediment needs to be removed.
- Inspect the condition of the observation well and make sure it is still capped.
- Generally inspect any contributing drainage area for any controllable sources of sediment or erosion.

SECTION 12: COMMUNITY & ENVIRONMENTAL CONCERNS

Compliance with the Americans with Disabilities Act (ADA). Porous concrete and porous asphalt are generally considered to be ADA compliant. Interlocking concrete pavers are considered to be ADA compliant, if designers ensure that surface openings between pavers do not exceed 0.5 inch. However, some forms of interlocking pavers may not be suitable for handicapped parking spaces. Interlocking concrete pavers interspersed with other hardscape features (e.g., concrete walkways) can be used in creative designs to address ADA issues.

Groundwater Protection. While well-drained soils enhance the ability of permeable pavement to reduce stormwater runoff volumes, they may also increase the risk that stormwater pollutants might migrate into groundwater aquifers. Designers should avoid the use of infiltration-based permeable pavement in areas known to provide groundwater recharge to aquifers used for water supply. In these source water protection areas, designers should include liners and underdrains in large-scale permeable pavement applications (i.e., when the proposed surface area exceeds 10,000 square feet).

Stormwater Hotspots. Designers should also certify that the proposed permeable pavement area will not accept any runoff from a severe stormwater hotspot. Stormwater hotspots are operations or activities that are known to produce higher concentrations of stormwater pollutants and/or have a greater risk of spills, leaks or illicit discharges. Examples include certain industrial activities, gas stations, public works areas and petroleum storage areas (for a complete list of hotspots where infiltration is restricted or prohibited, see Section 11.1 of GIP-01 Bioretention). For potential hotspots, restricted infiltration means that a minimum of 50% of the total Tv must be treated by a filtering or bioretention practice prior to the permeable pavement system. For known severe hotspots, the risk of groundwater contamination from spills, leaks or discharges is so great that infiltration of stormwater or snowmelt through permeable pavement is prohibited.

Underground Injection Control Permits. The Safe Drinking Water Act regulates the infiltration of stormwater in certain situations pursuant to the Underground Injection Control (UIC) Program, which is administered either by the EPA or a delegated state groundwater protection agency. In general, the EPA (2008) has determined that permeable pavement installations are not classified as Class V injection wells, since they are always wider than they are deep.

Air and Runoff Temperature. Permeable pavement appears to have some value in reducing summer runoff temperatures, which can be important in watersheds with sensitive cold-water fish populations. The temperature reduction effect is greatest when runoff is infiltrated into the sub-base, but some cooling may also occur in the reservoir layer, when underdrains are used. ICPI (2008) notes that the use of certain reflective colors for interlocking concrete pavers can also help moderate surface parking lot temperatures.

Vehicle Safety. Permeable pavement is generally considered to be a safer surface than conventional pavement, according to research reported by Smith (2006) and Jackson (2007). Permeable pavement has less risk of hydroplaning, more rapid ice melt and better traction than conventional pavement.
SECTION 13: REFERENCES

http://www.tdot.state.tn.us/Chief_Engineer/assistant_engineer_design/design/DesGuide.htm.

I. Test Pit/Boring Procedures

1. The number of required test pits or standard soil borings is based on proposed infiltration area:
 - < 1,000 ft² = 2 tests
 - 1,000 – 10,000 ft² = 4 tests
 - >10,000 ft² = 4 tests + 1 test for every additional 5,000 ft²

2. The location of each test pit or standard soil boring should correspond to the location of the proposed infiltration area.

3. Excavate each test pit or penetrate each standard soil boring to a depth at least 2 feet below the bottom of the proposed infiltration area.

4. If the groundwater table is located within 2 feet of the bottom of the proposed facility, determine the depth to the groundwater table immediately upon excavation and again 24 hours after excavation is completed.

5. Determine the USDA or Unified Soil Classification system textures at the bottom of the proposed infiltration area and at a depth that is 2 feet below the bottom. All soil horizons should be classified and described.

6. If bedrock is located within 2 feet of the bottom of the proposed infiltration area, determine the depth to the bedrock layer.

7. Test pit/soil boring stakes should be left in the field to identify where soil investigations were performed.

II. Infiltration Testing Procedures

1. The number of required infiltration tests is based on proposed infiltration area:
 - < 1,000 ft² = 2 tests
 - 1,000 – 10,000 ft² = 4 tests
 - >10,000 ft² = 4 tests + 1 test for every additional 5,000 ft²

2. The location of each infiltration test should correspond to the location of the proposed infiltration area.

3. Install a test casing (e.g., a rigid, 4 to 6 inch diameter pipe) to a depth 2 feet below the bottom of the proposed infiltration area.

4. Remove all loose material from the sides of the test casing and any smeared soil material from the bottom of the test casing to provide a natural soil interface into which water may percolate. If desired, a 2-inch layer of coarse sand or fine gravel may be placed at the bottom of the test casing to prevent clogging and scouring of the underlying soils. Fill the test casing with clean water to a depth of 2 feet, and allow the underlying soils to presoak for 24 hours.

5. After 24 hours, refill the test casing with another 2 feet of clean water and measure the drop in water level within the test casing after one hour. Repeat the procedure three (3) additional times by filling the test casing with clean water and measuring the drop in water level after one hour. A total of four (4) observations must be completed. The infiltration rate of the underlying soils may be reported either as
the average of all four observations or the value of the last observation. The infiltration rate should be reported in terms of inches per hour.

6. Infiltration testing may be performed within an open test pit or a standard soil boring.

7. After infiltration testing is completed, the test casing should be removed and the test pit or soil boring should be backfilled and restored.